METODIKA PRO TVORBU A HODNOCENÍ

MAKROSKOPICKÝCH DOPRAVNÍCH MODELŮ

Minimální standardy návrhů modelů pro dopravní plánování
Výstup řešení projektu: Metodika pro tvorbu a hodnocení makroskopických dopravních modelů, je výsledkem řešení výzkumného projektu č. TA04031189 název projektu: **Minimální standardy návrhu modelů pro dopravní plánování**, podpořeného z prostředků Technologické agentury České republiky, z Programu na podporu aplikovaného výzkumu a experimentálního vývoje ALFA, 4. veřejná soutěž.

Poskytovatel dotace: **Technologická agentura ČR**
Evropská 1692/37, 160 00 Praha 6

Autoři: Mgr. Jitka Ondráčková
Ing. Petr Hofhansl, Ph.D.
Zdeněk Melzer
Mgr. Jiří Dufek, Ph.D.
Ing. Jan Volek
Ing. Jakub Valta
Ing. Roman Čampula
Mgr. Marek Tögel

Oponenti: **Paul Riley MSc.**
European Investment Bank

Ing. Alena Heinišová
Správa železniční dopravní cesty, státní organizace

Grafické zpracování: Ing. arch. Alice Boleloucká

Certifikoval: Ministerstvo dopravy, Odbor ITS, kosmických aktivit a VaVal

Certifikováno dne: 4. 10. 2017, č. j.: 92/2017-710-VV/1

Vydavatel: Centrum dopravního výzkumu, v. v. i.

ISBN: 978-80-88074-52-6
ÚVOD DO METODIKY

Z obecného hlediska slouží makroskopický dopravní model k nalezení optimální varianty rozvoje dopravního systému města nebo regionu. Zpravidla se jedná o pomoc při plánování dopravy (analýza potřeb a návrh koncepčních řešení) a posuzování přínosů a nákladů nových infrastrukturních, dopravně-organizačních a technických opatření (např. nová silnice nebo cyklostezka, linka veřejné dopravy, záchytné parkoviště, nákupní centrum, omezení vjezdu, zavedení parkovacích zón apod.). V současné době v České republice neexistují standardizované postupy tvorby a hodnocení kvality modelů dopravy, tedy minimální požadavky na strukturu a rozsah modelů dopravy a analytických výstupů.

Tato metodika si klade za cíl sjednotit rozsah, strukturu a postup tvorby dopravního modelu, vymezit hranice možných aplikací makroskopických dopravních modelů v praxi a přiblížit celou problematiku odborné veřejnosti zabývající se dopravně plánovací praxi. Na procesu tvorby modelu dopravy se obvykle podílí interdisciplinární tým široké škály odborníků, konkrétně tým specialistů na dopravní modelování, dopravní plánování, urbanismus, průzkumy dopravního chování, demografii a GIS specialisté. Tvrůce či pořizovatel dopravního modelu užitím této metodiky zvýší spolehlivost, validitu a objektivitu dopravního modelu, jehož výsledky se tak stanou důvěryhodnější v očích odborné i laické veřejnosti. Důvěryhodnost je klíčovým předpokladem užití dopravního modelu v praxi.

Metodika popisuje problematiku nejčastěji využívaných druhů dopravních modelů a klade důraz na propojení modelu s dopravním chováním lidí a jejich každodenním rozhodováním odkud, kam a za jakým účelem podniknou přepravu, jaký dopravní mód využijí, jakou trasu budou volit apod. Metodika zahrnuje i další činnosti související s problematikou modelů dopravy, jako jsou dopravní průzkumy, kalibrace a prognózy rozvoje dopravy.

Struktura metodiky

Metodika je rozdělena do pěti hlavních částí. První z nich popisuje cíle metodiky a vstupní metodické dokumenty. Druhá se zaměřuje na způsoby projektového řízení tvorby dopravních modelů. Třetí část se zabývá teoretickým základem dopravního modelování a využitím dopravních modelů. Čtvrtá část se věnuje celému postupu tvorby dopravního modelu od definice účelu až po tvorbu scénářů rozvoje dopravy. Poslední část metodiky hodnotí kvalitu dopravních modelů. Metodika je zaměřena především na čtyřstupňové dopravní modely osobní dopravy, které jsou v současné době nejvíce využívány.
OBSAH

1. CÍL METODIKY A JEJÍ VYUŽITÍ ... 7
 1.1. VSTUPNÍ METODICKÉ DOKUMENTY .. 7

2. PROJEKTOVÉ ŘÍZENÍ TVORBY DOPRAVNÍCH MODELŮ ... 8
 2.1. PŘÍPRAVNÁ FÁZE PROJEKTU .. 8
 2.1.1 Přípravný projektový tým .. 9
 2.1.2 Analýza potřeb, struktura dopravního modelu a potřebné datové sady 9
 2.1.3 Volba manažerského přístupu ... 10
 2.1.4 Řešitelský tým .. 10
 2.1.5 Finanční a časový rámec projektu .. 11
 2.1.6 Vlastnictví modelu a dat a struktura dokumentace .. 12
 2.1.7 Zakázkové řízení .. 12
 2.2. REALIZAČNÍ FÁZE ... 12
 2.3. APLIKAČNÍ FÁZE, ÚDRŽBA A MODIFIKACE MODELU .. 13

3. CO JE DOPRAVNÍ MODEL .. 14
 3.1. VYUŽITÍ DOPRAVNÍCH MODELŮ .. 14
 3.2. TYPY DOPRAVNÍCH MODELŮ .. 17
 3.2.1 Rozdělení podle rozsahu území .. 17
 3.2.2 Rozdělení podle počtu dopravních módů .. 18
 3.2.3 Rozdělení podle času ... 19
 3.2.4 Rozdělení podle přístupu k modelování denních aktivit .. 20
 3.2.5 Dopravní modely s integrovaným modelem využití území .. 21

4. POSTUP PŘI TVORBĚ ČTYŘSTUPŇOVÉHO DOPRAVNÍHO MODELU .. 22
 4.1. ÚČEL DOPRAVNÍHO MODELU .. 24
 4.2. PARAMETRY DOPRAVNÍHO MODELU (PROSTOROVÝ, ČASOVÝ A MODÁLNÍ ROZSAH) 27
 4.2.1 Rozsah zájmového území .. 27
 4.2.2 Zonální struktura .. 28
 4.2.3 Rozsah a detail dopravních sítí, dopravní mody .. 28
 4.2.4 Segmentace dopravní poptávky v dopravním modelu ... 29
 4.2.5 Modelované časové období .. 30
 4.2.6 Výběr nástroje .. 30
 4.3. VSTUPNÍ DATA .. 31
 4.3.1 Dopravní sítě .. 32
 4.3.2 Data o využití území ... 33
 4.3.3 Demografická a socioekonomická data ... 33
 4.3.4 Průzkumy dopravní poptávky ... 34
 4.3.5 Vstupní data pro modely nákladní dopravy .. 35
4.3.6 Sčítání dopravy a cestujících a jiné dopravně-inženýrské průzkumy............................ 37
4.3.7 Data pro konstrukci predikce .. 40
4.3.8 Potřebné průzkumy v závislosti na účelu dopravního modelu 41
4.4 TVORBA ČTYŘSTUPŇOVÉHO DOPRAVNÍHO MODELU .. 43
 4.4.1 Vznik cest .. 44
 4.4.2 Rozdělení cest ... 45
 4.4.3 Volba dopravního prostředku .. 47
 4.4.4 Zatížení síť 48
 4.4.5 Specifika nákladní dopravy ... 51
4.5 KALIBRACE DOPRAVNÍHO MODELU ... 53
 4.5.1 Ověřování (verifikace) .. 53
 4.5.2 Kalibrace .. 54
 4.5.3 Posouzení míry shody modelu a reality pomocí statistických nástrojů 55
4.6 VALIDACE DOPRAVNÍHO MODELU .. 58
4.7 PREDIKCE ... 59
 4.7.1 Současný (základní) stav ... 60
 4.7.2 Scénář referenčního stavu .. 60
 4.7.3 Scénář alternativního stavu .. 62
 4.7.4 Typy nejčastěji hodnocených změn v dopravních modelech 62
 4.7.5 Určení možných odchylek predikce .. 65
 4.7.6 Monitoring kvality predikce ... 65
4.8 DOKUMENTACE DOPRAVNÍHO MODELU ... 66
5. HODNOCENÍ DOPRAVNÍHO MODELU .. 67
5.1 SROVNÁNÍ „NOVOSTI POSTUPŮ“ ... 68
5.2 POPIS UPLATNĚNÍ „CERTIFIKOVANÉ METODIKY“ .. 68
5.3 EKONOMICKÉ ASPEKTY .. 68
5.4 REJSTŘÍK ... 69
5.5 LITERATURA ... 70
PŘÍLOHA 1: HODNOTÍCÍ LIST PRO TVŮRCE A HODNOTITELE DOPRAVNÍHO MODELU
<table>
<thead>
<tr>
<th>Zkratka</th>
<th>Význam</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASD</td>
<td>Automatický sčítač dopravy</td>
</tr>
<tr>
<td>BAU</td>
<td>Business as usual, tzv. nulový scénář, vývoj situace bez opatření</td>
</tr>
<tr>
<td>CBA</td>
<td>Analýza nákladů a přínosů (cost-benefit analysis)</td>
</tr>
<tr>
<td>CIS JŘ</td>
<td>Celostátní informační systém o jízdních řádech</td>
</tr>
<tr>
<td>ČSU</td>
<td>Český statistický úřad</td>
</tr>
<tr>
<td>DMRB</td>
<td>Design Manual for Roads and Bridges (Příručka pro návrh cest a mostů)</td>
</tr>
<tr>
<td>EIA</td>
<td>Environmental Impact Assessment (vyhodnocení vlivu na životní prostředí)</td>
</tr>
<tr>
<td>GEH</td>
<td>Statistická metoda pro určení míry shody (odvozeno od tvůrce Geoffrey E. Havers)</td>
</tr>
<tr>
<td>GEV</td>
<td>Generalized extreme value (generalizovaná extrémní hodnota)</td>
</tr>
<tr>
<td>GIS</td>
<td>Geografický informační systém</td>
</tr>
<tr>
<td>HDM-4</td>
<td>Nástroj pro hodnocení silničních staveb v ČR</td>
</tr>
<tr>
<td>HDP</td>
<td>Hrubý domácí produkt</td>
</tr>
<tr>
<td>IAD</td>
<td>Individuální automobilová doprava</td>
</tr>
<tr>
<td>MK</td>
<td>Místní komunikace</td>
</tr>
<tr>
<td>MPO</td>
<td>Ministerstvo průmyslu a obchodu</td>
</tr>
<tr>
<td>ND</td>
<td>Nákladní doprava</td>
</tr>
<tr>
<td>NEZ</td>
<td>Nízkoemisní zóna</td>
</tr>
<tr>
<td>O-D</td>
<td>Origin-Destination (zdroj a cíl cesty)</td>
</tr>
<tr>
<td>ORP</td>
<td>Obec s rozšířenou působností</td>
</tr>
<tr>
<td>P&R</td>
<td>Parkoviště Park and Ride</td>
</tr>
<tr>
<td>PHM</td>
<td>Pohonné hmoty</td>
</tr>
<tr>
<td>PK</td>
<td>Pozemní komunikace</td>
</tr>
<tr>
<td>POI</td>
<td>Bod zájmu (Point of Interest – POI)</td>
</tr>
<tr>
<td>RPDI</td>
<td>Roční průměr dopravních intenzit</td>
</tr>
<tr>
<td>RZ</td>
<td>Registrační značka</td>
</tr>
<tr>
<td>ŘSD</td>
<td>Ředitelství silnic a dálnic</td>
</tr>
<tr>
<td>SSZ</td>
<td>Světelné signalizační zařízení</td>
</tr>
<tr>
<td>SP</td>
<td>Stated Preference (Průzkum vyjádřených preferencí)</td>
</tr>
<tr>
<td>SUMP</td>
<td>Sustainable Urban Mobility Plan (Plán udržitelné městské mobility)</td>
</tr>
<tr>
<td>ToR</td>
<td>Terms of Reference (dokumentace nastavení projektu)</td>
</tr>
<tr>
<td>TP</td>
<td>Technické podmínky</td>
</tr>
<tr>
<td>ÚPD</td>
<td>Územně plánovací dokumentace</td>
</tr>
<tr>
<td>VHD</td>
<td>Veřejná hromadná doprava</td>
</tr>
<tr>
<td>ŽP</td>
<td>Životní prostředí</td>
</tr>
</tbody>
</table>
1. **CÍL METODIKY A JEJÍ VYUŽITÍ**

Cílem metodiky je nastavit standardy kvality pro všechny dílčí kroky stavby dopravního modelu a tím umožnit ježnému obecnímu, městskému a jiným zadavatelům snadno se orientovat v prostředí oboru dopravního modelování a od zpracovatele požadovat kvalitní výstupy. Uživatelé metodiky mohou být tak objednatel, tak zhotovitel modelu. V obou případech se může jednat o státní instituce, soukromé uživatele, projekční i konzultační firmy. Důvodem vzniku metodiky byl rostoucí zájem o hodnocení dopravních staveb a opatření za pomoci dopravního modelování. Přitom povědomí o možných přednostech či nedostatcích tohoto oboru zůstává stále poměrně nízké. Důsledkem je nepříliš důkladná specifikace požadavků na dopravní modely.

1.1. **VSTUPNÍ METODICKÉ DOKUMENTY**

Dopravní modely jsou vytvářeny s ohledem na již existující zákony a normy. Níže uvedené dokumenty upravují nejen postup tvorby dopravního modelu či jeho kroky a vstupy, ale mohou také klást požadavky na stanovení specifických výstupů, jejich rozsah i formu.

- **Technické podmínky (TP):** metodické dokumenty, které se týkají pozemních komunikací. Pro dopravní modelování jsou nejvíce využívané tyto TP:
 - TP 189 - Stanovení intenzit dopravy na pozemních komunikacích (udávají variace dopravy, rovněž specifikují postup pro měření a další zpracování dopravních průzkumů)
 - TP 225 - Prognóza intenzit automobilové dopravy (obsahují koeficienty pro vývoj intenzit silniční dopravy v čase dle typu vozidla a kategorie komunikace)
 - TP 135, 188, 234, 235, 236 - TP pro návrhy a posuzování jednotlivých typů křižovatek, podle kterých je vhodné křižovatky v modelu definovat
- **Prováděcí pokyny pro hodnocení ekonomické efektivnosti projektů silničních a dálničních staveb:** obsahují nutné postupy, které je třeba dodržet v případě tvorby silničního modelu jeho následného posuzování pomocí metodiky HDM-4
- **Prováděcí pokyny pro hodnocení efektivnosti projektů železniční infrastruktury:** pokyny pro zpracování přepravních prognóz a jejich výstupů pro projekty železniční dopravy, včetně možného využití dopravního modelování
- **Zákon č. 100/2001 Sb.:** posuzování vlivů na životní prostředí - specifické požadavky pro vstup do studie EIA
- **The Use of Transport Models in Transport Planning and Project Appraisal:** rámcové pokyny pro zpracování dopravních modelů, vydané iniciativou JASPERS
- **Metodika pro hodnocení efektivnosti investic projektů železniční infrastruktury a pozemních komunikací:** definuje vstupy nutné pro ekonomické hodnocení i vstupy využívané v predikcích dopravních modelů
- **Metodika aktivitně-dopravního průzkumu:** pokyny pro návrh průzkumu dopravního chování
- **Metody prognózy intenzit generované dopravy:** obsahem je způsob prognózy intenzit dopravy generované objekty s velkými nároky na dopravu, jako jsou obytné soubory, skladové a průmyslové areály, obchodní zařízení atd.
2. PROJEKTOVÉ ŘÍZENÍ TVORBY DOPRAVNÍCH MODELŮ

Na tvorbě každého projektu se standardně podílí 3 typy subjektů: zadavatel, uživatel a tvůrce. Zadavatel projektu v případě dopravních modelů představuje zpravidla řídící subjekt veřejné správy (např. ministerstvo, státní organizace, krajský úřad, obecní úřad nebo magistrát). Role zadavatele spočívá ve financování celého projektu s cílem získat do vlastnictví nástroj pro účely dopravního plánování a realizace dopravní politiky, který bude sloužit jeho zájmovým subjektům, tj. uživatelům. Uživatelé dopravního modelu jsou útvary a instituce zabývající se dopravním plánováním v území, které má řídící subjekt veřejné správy ve správě. Zpravidla se jedná např. kanceláře architekta, koncepční a plánovací instituty, oddělení strategie, oddělení životního prostředí apod. Role uživatelů spočívá ve specifikaci analytických potřeb, které by dopravní model měl uspokojovat. Budou to právě uživatelé, kteří po dokončení modelu budou s tímto analytickým nástrojem pracovat a v budoucnu se podílet na aktualizaci nebo inovací modelu. Je proto klíčové, aby se ve vymezených rolích podíleli na tvorbě modelu od začátku do konce spolu s tvůrcí dopravního modelu. Tvůrce modelu tvoří specializovaný tým odborníků (interní či externí), který vytváří samotný dopravní model. Úkolem tvůrce modelu je vytvořit nástroj, který bude naplňovat analytické potřeby uživatelů modelu, a zároveň bude vytvořen v časových a finančních rámcích, které poskytuje zadavatel.

2.1. PŘÍPRAVNÁ FÁZE PROJEKTU

Přípravnou fázi tvorby dopravního modelu lze rozdělit na dvě části. V první části přípravné fáze je třeba provést následující analýzy a zvolit manažerský přístup k tvorbě modelu:

- stanovení přípravného projektového týmu
- analýza potřeb, struktury dopravního modelu a potřebné datové sady
- volba manažerského přístupu (in-house vs. consultant expertise)

V druhé části přípravné fáze jsou v závislosti na zvoleném přístupu dále specifikovány tyto aspekty:

- řešitelský tým
- finanční a časový rámec projektu
- vlastnictví modelu a dat a struktura dokumentace
- technická specifikace pro zakázkové řízení (v případě consultant expertise přístupu)

Všechny výše uvedené aspekty přípravné fáze a jejich vypořádání by měly být uvedeny v rámci dokumentace nastavení projektu (Terms of Reference – ToR).
2.1.1 Přípravný projektový tým

Prvním krokem v přípravné fázi je vytvoření přípravného projektového týmu. Minimální složení projektového týmu je následující:

- 2 zástupci zadavatele (politický reprezentant a manažer projektu)
- 1 či více zástupců budoucích uživatelů (specialisté dopravně-plánovací praxe)
- min. 1 interní nebo externí specialista na dopravní modelování

Specialista na dopravní modelování by měl mít alespoň 5 let praxe s dopravním modelováním a aplikací dopravních modelů v praxi a alespoň 1 realizovaný projekt. Teoretická znalost modelování není sama o sobě dostatečně vypovídající o schopnosti vést či kontrolovat.

2.1.2 Analýza potřeb, struktura dopravního modelu a potřebné datové sady

Dopravní model je analytický nástroj, který slouží subjektům dopravního plánování k hodnocení dopadů dopravních politik a dopravních opatření. Analytické potřeby specifikují uživatelé modelu, tedy specialisté na dopravní plánování, specialisté na územní plánování, specialisté na tvorbu strategií atd. Všechny tyto odborníci musí za své obory definovat konkrétní otázky, ukazatele či indikátory, které by mělo model poskytovat. Analytické potřeby by měly být definovány s ohledem na současné a budoucí politiku a koncepční dokumenty v horizontu alespoň 10 let. Tvorba kvalitního dopravního modelu od nuly, včetně rozsáhlého sběru dat typicky trvá od okamžiku přípravy do plného zprovoznění 2-4 roky. Dopravní modely umožňují hodnotit celou škálu opatření a dopravních politik a analyzovat řadu problémů v dopravě (tab. 02). Specifikace analytických potřeb definuje obsah a nároky na detail a rozsah samotného dopravního modelu. Tyto specifikace jsou reflektovány při designu struktury dopravního modelu. Specifikace potřeb zároveň představuje kontrolní kritéria účelu modelu z pohledu zadavatele projektu. Pouze dopravní model, který naplňuje veškeré analytické potřeby uživatelů je z pohledu zadavatele přínosný a účelný.

Rámec a strukturu modelu navrhuje specialista na dopravní modelování na základě analýzy potřeb jednotlivých uživatelů. Design rámce dopravního modelu se sestává z:

- definice typu a účelu modelu (na základě analýzy potřeb)
- stanovení modelovaného území
- stanovení uvažovaných dopravních módů
- stanovení časového rámce a výhledového horizontu
Design struktury dopravního modelu provádí specialista na dopravní modelování na základě analýzy potřeb jednotlivých uživatelů. Dopravní model by neměl být chápán pouze jako jeden ze vstupů ekonomického hodnocení (např. predikci dopravních intenzit ve výhledovém horizontu), ale především jako nástroj pro analýzu problémů a potřeb, a pro navrhování/hodnocení alternativních opatření a politik či celých balíků opatření reprezentující koncepční schémata dopravní politiky [1].

2.1.3 Volba manažerského přístupu

Tato problematika se týká především otázky personálního a materiálního zabezpečení týmu, který bude tvorit model. Tvorbu dopravního modelu může realizovat buď přímo veřejná správa prostřednictvím vlastních lidských zdrojů (in-house expertise) nebo tvorbu modelu realizuje prostřednictvím/ve spolupráci externího subjektu (consultant expertise) [2]. Oba přístupy mají své výhody a nevýhody. Volba manažerského přístupu by měla vycházet jednak z existujících lidských a materiálních zdrojů, které má zadavatel k dispozici, a dále z koncepce rozvoje těchto zdrojů do budoucna. Obecně lze konstatovat, že in-house expertise je dražší a výrazně delší cesta, která může skončit neúspěchem z důvodu obtíží se získáním a následným držením odborníků, nedostatku dalších financí, omezených znalostí apod. Jedná se však o syste matičtější přístup, který zajišťuje kontinuitu procesu a expertizy, jehož výrazné přínosy se projevují v dlouhodobém horizontu. Consultant expertise je mírně levnější a výrazně kratší varianta, při které je i riziko neúspěchu výrazně nižší. Obsahuje však celou řadu rizik, které mohou znamenat omezenou použitelnost modelu z dlouhodobého hlediska a jedná se proto o variantu vhodnou v křížkodobém horizontu. Výše uvedené přístupy mohou být pochopitelně v praxi kombinovány tak, aby byla překonána negativa uvedených přístupů. Příkladem takové kombinace, která se hodí například v menších městech, může být interní odborník na plánování, modelování či průzkum, který pomáže při sběru dat, definuje potřeby modelu a kontroluje kvalitu výstupů externího zpracovatele.

2.1.4 Řešitelský tým

Řešitelský tým se typicky skládá z 1 vedoucího experta na dopravní modelování a podle potřeby cca 5 až 10 osob zajišťujících modelování, sběr a přípravu dat a aplikaci modelu. Řešitelský tým disponuje praktickými zkušenostmi v těchto znalostních doménách:

- modelování pomocí modelů diskrétní volby
- principy a proces dopravního modelování
- dopravní inženýrství
- příprava, provedení a vhodnocení dopravních průzkumů všech typů
- statistická analýza průzkumů dopravního chování obyvatelstva
- demografické prognózy
- územní plánování a prognóza rozvoje území
• databáze a data management
• geografické informační systémy
• další znalostní domény relevantní k účelu a zaměření dopravního modelu

2.1.5 Finanční a časový rámec projektu

Finanční a časový rámec tvorby modelu vychází z možností zadavatele projektu. Je třeba zdůraznit, že nedílnou součástí finančního rámce jsou kromě nákladů na samotnou tvorbu modelu i náklady na pořízení a sběr dat. Z důvodů komplikované provázanosti a časové synchronizace nelze doporučit sběr dat a tvorbu modelu ve dvou a více oddělených projektech s vlastním finančním rámcem. Jednak nelze nikdy zaručit časovou sousednost mezi projekty a dále se vytrácí vazba mezi uživatelem dopravního modelu a řešitelským týmem pořizující data.

Za největší položky v rozpočtu lze považovat náklady spojené se sběrem dat ve terénu (průzkum dopravního chování, ad hoc dopravní průzkumy), přípravou a zpracováním dat a tvorbou modelu. Významnou položku rozpočtu mohou tvořit náklady na nákup existujících dat ve vlastnictví externích subjektů. V případě věřejných subjektů je obvykle cena za pořízení dat pro zadavatele nižší, v případě soukromých subjektů může být cena za data výrazně vyšší.

V případě in-house realizace dopravního modelu v rámci organizace, která nikdy předtím dopravní model nevlastnila, musí zadavatel očekávat relativně velké investice do lidských zdrojů a software. Zároveň je třeba zdůraznit, že varianta tvorby modelu ve spolupráci s externím subjektem (consultant expertise) není výrazně levnější, než in-house varianta. Rozdíl spočívá především v ušetření času, který znamená nižší náklady na mzdy všech účastníků projektu.

Časový rámec tvorby modelu nepřímo úměrně zkracovává úrovni zkušenosti řešitelského týmu [1]. Zároveň platí, že tato úměra má svá omezení a ani maximálně zkušený řešitelský tým není schopen zrealizovat tvorbu modelu v extrémně krátkém čase. Některé sběry dat lze například provádět pouze v určitém ročním období. Dále nákup dat u externích subjektů může trvat určitou dobu, kterou nemůže řešitelský tým uřadit.

Časový rámec lze efektivně zkrátit zvláště prostřednictvím agažovanosti a agilního přístupu k řešení ze strany projektového týmu, zvláště pokud jde o budoucí uživatele projektu, kteří komunikují a specifikují své analytické potřeby v průběhu tvorby modelu. Za zcela neefektivní situaci lze považovat stav, kdy při prezentaci výsledků dokončeného (kalibrovaného a validovaného modelu), začnou uživatelé uvažovat nad potenciálními přínosy a začnou vyžadovat od modelu nové funkce a ukazatele. Stejně tak je však nutné důsledná specifikace všech budoucích výsledků dopravního modelu, které tvůrce modelu agilně komunikuje s uživateli modelu.
Je zcela běžné, že se časový rozvrh projektu v budoucnu změní, zvláště v pozdějších fázích realizace. S rostoucím časovým rámcem se přímo úmerně zvyšuje pravděpodobnost výskytu neočekávaných skutečností [1].

2.1.6 Vlastnictví modelu a dat a struktura dokumentace

Vlastníkem dopravního modelu a dat, včetně všech částí by měl být zadavatel projektu. V praxi to znamená především vlastnictví konkrétních výstupů projektu. Těmito výstupy jsou:

- dokumentace nastavení projektu
- sada pravidelných reportů o průběhu realizace projektu (modelu)
- odborná dokumentace dopravního modelu
- dopravní model ve všech finálních variantách a scénářích ve formátu příslušné softwarové platformy + verze všech prostorových dat ve formátu ESRI Shapefile
- manuál k užívání modelu

Vlastník modelu by měl také mít možnost poskytnout model třetí straně pro další využití či vývoj, proto je nutné smluvně ošetřit jak na vlastnictví modelu, tak na práva a omezení související se zacházením s algoritmy a daty obsaženými v modelu. Pokud mají externí poskytovatelé dat (např. dopravci) příliš náročné ochranné podmínky na zveřejnění výstupů modelů a poskytování vlastních dat třetím stranám, které znemožní předpokládaný budoucí model využití modelu, je žádoucí zvážit vlastní sběr těchto dat.

Detailní strukturu a obsah odborné dokumentace modelu, dopravního modelu samotného a manuálu k užívání modelu uvádí kap. 4.8.

2.1.7 Zakázkové řízení

V případě, že se zadavatel rozhodne realizovat tvorbu dopravního modelu nebo sběr dat prostřednictvím spolupráce s externím dodavatelem, je potřeba realizovat zakázkové řízení. Zakázkové řízení by se mělo realizovat až po dokončení dokumentace nastavení projektu (ToR), tedy až na konci přípravné fáze, kdy jsou specifikovány všechny aspekty přípravné fáze [1]. Z tohoto vyplývá, že samotný design dopravního modelu si musí zadavatel provést na vlastní náklady z vlastních zdrojů či ve spolupráci s jiným externím subjektem, který nebude součástí řešitelského týmu. Pokud má externí subjekt absolutní moc nastavit rozsah a strukturu dopravního modelu, je prakticky nemožné posoudit efektivitu vynaložených finančních prostředků.

2.2. REALIZAČNÍ FÁZE

Dokončením projektové dokumentace, vytvořením realizačního týmu a nastavením všech smluvních vztahů je zahájena realizační fáze tvorby dopravního modelu. Realizační tým tvoří původní přípravný projektový tým (politický dohled, manažer projektu, externí nebo interní specialista na dopravní modelování zajišťující technický dohled a uživatelé dopravního modelu) a vytvořený externí či smluvně získaný externí řešitelský tým (vedoucí specialista na dopravní modelování a specialisté na jednotlivé znalostní domény).
V rámci realizační fáze by měly probíhat pravidelné konzultace projektového týmu a řešitelského týmu a pravidelný reporting ze strany vedoucího řešitelského týmu a technického dohledu. Organizaci vzájemné komunikace má na starost manažer projektu, který zprostředkovává jednání mezi všemi členy realizačního týmu. Manažer zároveň vyhodnocuje pravidelné reporty a vytváří podklady pro směrování projektu.

Realizační fáze končí dokončením dopravního modelu. Dokončený dopravní model je kalibrován a validován ve všech jeho variantách a scénářích a byla dokončena kompletní dokumentace modelu. Model může být kompletně předán do užívání uživatelům modelu.

2.3. APLIKAČNÍ FÁZE, ÚDRŽBA A MODIFIKACE MODELU

Předáním dopravního modelu do užívání uživatelům modelu (dopravní plánování, územní plánování, životní prostředí apod.) začíná aplikační fáze, kdy je model využíván uživateli jako nástroj pro jejich specifické potřeby. Nejčastěji se jedná o výpočet vstupních hodnot pro ekonomická hodnocení investičních projektů nebo hodnocení alternativních variant konkrétního dopravního rešení. Aplikace modelu se řídí manuálem, který je povinnou součástí dokumentace modelu.

Okamžikem dokončení mohou být také zahájeny přípravy na aktualizaci modelu nebo jeho modifikaci. Podstatou údržby modelu je pravidelná aktualizace vstupních dat, která již při dokončení nebudou pravděpodobně zcela aktuální (tvorba modelu trvá 2 roky, takže data v okamžik dokončení mohou být i 2 roky stará). Dále v průběhu řešení pravděpodobně vyvstanou různé další požadavky uživatelů, které již nebude možné uspokojit stávajícím modelem. Proto je vhodné začít připravovat modifikace, v podobě doplňování výpočetních modulů (např. pro výpočet emisí z dopravy, pro výpočet sociálních dopadů, pro nalezení optimální ceny jízdného apod.). Nové výpočetní či analytické moduly musí respektovat základní strukturu modelu, tedy agregaci prostorových vztahů do zonálního členění, kategorizaci poptávkových vrstev, strukturu dopravních módů a časový rámec výstupu (např. běžný pracovní den).
3. CO JE DOPRAVNÍ MODEL

Dopravní model je zjednodušená reprezentace části reálného světa. Jedná se o analytický nástroj, který umožňuje systematické zobrazení vývoje a změn dopravy v reakci na vývoj a změnu vstupních předpokladů modelu. Vstupními předpoklady jsou zpravidla velikost, struktura a chování dopravní poptávky (obyvatelstvo, lokalizace služeb, stupeň automobilizace apod.) a dopravní nabídka (dopravní síť, linky VHD, umístění a časová dostupnost parkovišť, finanční náklady dopravy apod.).

Dopravní chování obyvatel je popsáno pomocí matematických funkcí, proto dopravní modely umožňují predikce budoucího stavu v závislosti na vývoji a změnách dopravní poptávky a dopravní nabídky v čase a prostoru. Výstupy dopravního modelu jsou intenzity vozidel na dopravní síti a předpokládané přepravní vztahy mezi zónami modelu (viz dále).

Dopravní model má v podstatě tři základní prvky (koncepty): dopravní poptávku, dopravní nabídku a tzv. generalizované náklady, což jsou náklady cesty převedené spolu s časem na společnou jednotku. Všechny tyto prvky se navzájem ovlivňují: dopravní poptávka má vliv na generalizované náklady a dopravní nabídka pomáhá generalizované náklady definovat.

Dopravní poptávka je v modelu dopravy obsažena ve formě matic přepravních vztahů, což jsou počty cest (celkově nebo jednotlivými druhý dopravy) z dopravních zdrojů do dopravních cílů. Zdroje a cíle jsou definovány v zonálním uspořádání modelu. Poptávkových matic model obsahuje zpravidla více, v závislosti na skupině obyvatel a účelu cesty (např. počty cest pracujících osob do zaměstnání, cesty studentů do škol, cesty obchodní, a jiné).

Dopravní nabídka je v modelu reprezentována dopravní síti, která obsahuje dopravně inženýrské charakteristiky jednotlivých úseků (délka, rychlost, počet pruhů, kapacita, a další) i křižovatek a křižovatkových pohybů.

Třetím klíčovým prvkem modelu jsou tzv. generalizované náklady, které se uplatňují ve všech fázích modelu: při výběru destinace, dopravního módu i optimální trasu. Model dopravy pracuje s přepravním časem a přepravními náklady, a to ve stejně formě jako s dopravní poptávkou, tedy s pomocí mezi - zonálních maticí. Aby bylo možné s přepravními náklady pracovat, jsou převedeny na jednotku času, nejčastěji s pomocí vyjadření finanční hodnoty času (tzv. VT – Value of Time).

V tomto případě mluvíme o generalizovaných nákladech.

3.1. VYUŽITÍ DOPRAVNÍCH MODELŮ

Hlavním smyslem konstrukce dopravního modelu je predikce budoucího stavu nebo analýza současných problémů v dopravě. Budoucí stav může být tvořen tzv. nulovým scénářem (referenční stav) nebo scénářem simulujícím stav po zavedení určitého opatření (např. zákaz vjezdu nákladních vozidel do centra města nebo výstavba nové komunikace). Dopravní model umí predikovat vývoj dopravní poptávky a intenzity na dopravní síti v reakci na změnu vstupních parametrů modelu. Význam užívání dopravních modelů zvláště ve veřejném sektoru narůstá, jelikož sílí tlak na aplikaci politiky založené na fakttech (Evidence-based Policy), tedy politiky, která je funkční a nikoliv ideologická. Ty jej často vyžadují jako podklad, který posoudí, zda investice do dopravní infrastruktury budou smysluplné a plánovaná dopravní infrastruktura bude adekvátně využívána.
Makroskopické dopravní modely bývají často využívány jako nástroj k posuzování různých projektů a hledání nejvhodnějšího řešení problémů v dopravě. Toto posouzení začíná před přesným inženýrským návrhem, tedy v době, kdy se zvažuje několik variant. Na začátku se jednotlivé varianty hodnotí v menším detailu, poté se na základě dalších podnětů více zpřesňují. Celé posouzení projektu je tak iterativní proces, ve kterém se prolínají jak aktivity dopravního modeláře, tak aktivity projektanta a dopravního stratega/ inženýra. Následující schéma ukazuje příklad vzájemného ovlivnění práce projektanta a dopravního modeláře. Tento příklad je velmi zjednodušen a je uveden pouze z pohledu dopravního modelování, ve skutečnosti vstupuje do posuzování mnohem více faktorů.
Jak dopravní model slouží k posouzení projektu (upraveno dle [3])

<table>
<thead>
<tr>
<th>AKTUÁLNÍ STAV</th>
<th>DOPRAVNÍ MODEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Je vytvořen návrh postavit most a propojit tak dvě čtvrti oddělené řekou, protože existující most je velmi vzdálený.</td>
<td>Pomocí dopravního modelu jsou odhadnuty změny v cestovním čase pro jednotlivé varianty.</td>
</tr>
<tr>
<td>Jsou identifikovány tři možné lokality (A, B a C).</td>
<td>Dopravní model je vylepšen o více detailní dopravní síť.</td>
</tr>
<tr>
<td>Na základě cestovních časů se nejlépe jeví umístění mostu v lokalitě A.</td>
<td></td>
</tr>
<tr>
<td>Začne projekční práce na podobě mostu v této lokalitě.</td>
<td></td>
</tr>
<tr>
<td>Projektant upozorní na možný konflikt mezi dopravou, která přijíždí na most a místní dopravou v okolí.</td>
<td></td>
</tr>
<tr>
<td>Když je doprava modelována více detailně, největší časové úspory nabízí lokalita B.</td>
<td></td>
</tr>
<tr>
<td>Místní autority požadují zavedení autobusové linky přes most.</td>
<td></td>
</tr>
<tr>
<td>Návrh ukazuje, že zavedení autobusové linky v lokalitě B zdvojnásobí finanční náklady na stavbu, protože přístupová cesta je příliš úzká.</td>
<td></td>
</tr>
<tr>
<td>Po zvážení nákladů a dopadů je jako nejvhodnější vybrána lokalita C.</td>
<td></td>
</tr>
</tbody>
</table>
3.2. TYPY DOPRAVNÍCH MODELŮ

Při tvorbě dopravního modelu je vždy klíčové, pro jaký účel je model tvořen. Podle toho lze rozlišovat modely podle rozsahu modelovaného území, podle počtu modelovaných dopravních módů, podle času a podle přístupu k modelování denních aktivit. Dopravní modely využívané v praxi jsou zpravidla kombinací níže uvedených typů modelů, přičemž zvolená kombinace zohledňuje právě účel, pro který byl model navržen. Jednotlivé typy dopravních modelů nejsou striktně definovány a mohou se navzájem prolínat.

3.2.1 Rozdělení podle rozsahu území

Makroskopické modely se využívají pro velké územní celky s rozsáhlou sítí komunikací, na které je modelována především intenzita dopravního proudu. Obecně slouží především jako nástroj hodnocení opatření v rámci strategických dokumentů a územně rozsáhlých dopravních opatření díky jejich prediktivní schopnosti. Ve většině případů se jedná o deterministické modely s nižší úrovni detailnosti, a proto zde není zahrnováno vzájemné ovlivňování mezi vozidly. Použití je vhodné pro velké územní celky, od měst a regionů po modely celých států. Výstupy z makroskopických modelů slouží k určení intenzit dopravních proudů, jejich směrové distribuce a přepravních vztahů a dělí přepravní práce (v případě multimodálních dopravních modelů).

Mikroskopické modely se zaměřují na každé jedno vozidlo a jeho chování (tj. chování řidiče), vlastnosti a vzájemné ovlivňování s ostatními vozidly v dopravním proudu a s dopravní infrastrukturou.

V tomto případě jsou zásadním předpokladem kvalitní podklady na detailní prostorové úrovni (geometrické uspořádání řešení oblasti), kdy je zapotřebí zpracovat detailní geometrické uspořádání řešené oblasti, jelikož je třeba uvažovat rozměry vozidel a jejich hmotnost, maximální rychlost a hodnoty zrychlení a zpomalení. Výstupy z modelu jsou časové zdržení a rychlost vozidel, délka kolon, ale také například propustnost křižovatek. Obecně jsou tyto modely vhodné pro posouzení návrhu infrastrukturního anebo dopravně-organizačního opatření v konkrétní lokalitě (křižovatka, menší část města).
Mezoskopické modely kombinují prvky makroskopických a mikroskopických modelů. Ve své podstatě zpracovávají detailně řešené území, zahrají podrobněji členěné území i charakteristiky jednotlivých prvků sítě a zabývají se zpožděním při průjezdech křižovatek. Zároveň ale nezahraňují vzájemné ovlivňování mezi vozidly v dopravním proudu. Obdobně jako makroskopické modely poskytují údaje o dopravních proudech a přepravních vztazích. Z důvodu vyšší územní podrobnosti jsou mezoskopické modely vhodné pro menší územní celky, příbližně na úrovni okresů či měst s jejich okolím. Nicméně jejich užití by mělo vycházet především z požadavků na vyšší realističnost dopravních toků (např. při modelování opatření preference MHD, zelených vln apod.).

Nanoskopické modely jsou mikroskopické modely, které klade důraz na vyšší podrobnost dalších parametrov modelu. V praxi lze dále podrobněji určit jízdní chování jednotlivých „entit“ (jízda řidiče nákladního vozidla, autobusu, osobního vozidla, cyklisty, chodce, osoby s omezenou schopností pohybu apod.).

Hybridní modely jsou v současné době nejpoužívanější. Jedná se o kombinaci uvedených technik, kdy například v makroskopickém modelu používáme velkou úroveň detailů v zájmových místech. Hybridní model umožňuje simulovat předmětné jevy v různých lokalitách s odlišnou úroveň detailu, čímž je zachována priměřená velikost modelu a zároveň optimalizovan výpočet a zvýšována efektivita celkové práce s modelem.

3.2.2 Rozdělení podle počtu dopravních módů

Unimodální model lze použít pro technologicky „uzavřené“ způsoby dopravy, tj. pro speciální případy silniční dopravy, vodní dopravu nebo železniční dopravu. V těchto případech však bývá častěji přístupováno ke zpracování multidimenzionálních modelů.

Multimodální modely posuzují více než jeden dopravní mód a zachycují tak změny dopravní poptávky v důsledku konkurence jednotlivých dopravních módů. Typickým příkladem jsou modely nákladní dopravy, kde se kromě silniční dopravy modeluje i doprava železniční nebo vodní. Dalším
příkladem jsou modely dopravy ve městě, kde se obyvatelé rozhodují mezi automobilovou dopravou, městskou hromadnou dopravou, chůzi či jízdu na kole.

Obr. 03 Znázornění unimodální a multimodální dopravní sítě

3.2.3 Rozdělení podle času

Statické modely neuváží dynamiku v čase. Statické modely počítají dopravní objemy (intenzity) za předem daný časový interval (např. 24 hodin nebo dopravní špičku) přičemž není uvažována změna v čase. Výsledkem statického modelu jsou modelové dopravní intenzity na síti ve formě pentlogramů, které se v čase nemění.

Dynamické modely se naopak v čase vyvíjejí a některé jejich vlastnosti se mohou s časem měnit. Používají se pro analýzy jevů, které se mění v krátkých časových intervalech. Příkladem může být dopravní model zohledňující denní variace dopravy, čímž poskytuje údaje o dopravních zátěžích a přepravních proudech pro různé denní doby.

Základním rozdílem oproti statickým modelům je, že do modelu vstupuje tzv. hustota dopravy, tedy počet vozidel na 1 km silnice. Z tohoto důvodu dynamické modely lépe simulují dopravní kongesce a jsou vhodné na stanovení i predikci problematických lokalit. Výsledkem dynamického modelu jsou modelové dopravní intenzity ve formě animací vozidel, které se v čase mění, nebo v některých případech ve formě pentlogramů (mapa dopravní sítě, kde šířka (tloušťka) jednotlivých úseků sítě koresponduje s intenzitou dopravy).
3.2.4 Rozdělení podle přístupu k modelování denních aktivit

Klíčovým aspektem v dopravních modelech zaměřených na osobní dopravu je simulace průběhu denních aktivit. Každodenní aktivity jsou příčinou samotného vykonávání cest člověkem. Modelování dopravní poptávky v osobní dopravě z tohoto důvodu spočívá ve vytváření realistických simulací cestování za každodenními aktivitami.

Při modelování každodenních aktivit se rozlišují 3 základní přístupy [4]:

- **Trip-based** přístup (TrBA)
- **Tour-based** přístup (ToBA)
- **Activity-based** přístup (ABA), **Daily schedule** model

Tyto přístupy se od sebe odlišují způsobem, kterým pracují s aktivitou jako analytickou jednotkou.

Trip-based přístup uvažuje jako základní analytickou jednotku cestu (Trip) a modeluje aktivity v průběhu dne jako jednosměrné cesty mezi zdroji a cíli, které jsou vzájemně nezávislé z hlediska pořadí i času. Trip-based modely jsou v současné době využívány nejčastěji a to především z důvodu dostupnosti dat.

Tour-based přístup uvažuje jako základní analytickou jednotku řetězec cest (Tour) a modeluje aktivity v průběhu dne jako řetězce cest, které na sebe chronologicky navazují. Soubor aktivit v průběhu dne může být rozdělen do několika řetězců, které jsou však už navzájem nezávislé z hlediska pořadí i času. V praxi se přístup využívá v případech, kdy je vhodné simulovat řetězce cest, k čemuž dochází např. v modelech nákladní dopravy. Rovněž je vhodné používat tento přístup v osobní dopravě, neboť je stále více běžné brát děti do školy, potom jet do práce, po práci na nákup, atd.

Activity-based přístup považuje za základní analytické jednotky jednotlivé aktivity, ze kterých se modelují rozvrhy denních aktivit (Activity schedule). Jedná se o komplexní přístup k modelování denních aktivit, jelikož parametrem každé aktivity je počáteční a koncový čas, doba, lokalizace a podmínky v souvislosti s historií cesty v rámci dne (např. použitý dopravní prostředek). Ze všech tří přístupů se jedná o nejvěrohodnější způsob simulace dopravní poptávky, jelikož umožňuje reflektovat nejen opatření dopravního charakteru (infrastrukturní, dopravně-organizační, ekonomická), ale především opatření cílená na komplexní změnu dopravního chování v důsledku nasazování nových technologií (nejen dopravních), které mění životní styl populace včetně průběhu denních aktivit. Z praktického hlediska se však zároveň jedná o přístup nejsložitější. Užití tohoto přístupu klade vysoké nároky na podrobnost dat o dopravním chování modelované populace a o cílech dopravní poptávky (např. otevírací obvyky provozovén). Modely s užitím tohoto přístupu jsou náročné také z výpočetního hlediska. Všechny tyto nároky jsou současně době hlavními limitujícími faktory nasazení těchto modelů v praxi.

1 Pokud neuvažujeme cesty, jejichž účelem je samotné cestování, tj. cesta samotná představuje aktivitu, za jejímž účelem se cestuje (např. výlety, zážitková jízda autem, sportovní výkon apod.).
3.2.5 Dopravní modely s integrovaným modelem využití území

Z hlediska predikční dynamiky modelu lze rozlišit tzv. Land-use Transportation Models, které jsou vytvářené integrovaným přístupem. V těchto modelech je zakomponována zpětnovazební smyčka, která umožňuje vliv dopravního modelu zpět na jeho socio-ekonomické prostředí v čase. Tato zpětná vazba je vyřešena skrze model využití či rozvoje území (Land-use Model), který predikuje na základě poměrů v dopravě (dostupnosti území, dopravních zátěži a dopadů na kvalitu života) získaných z dopravního modelu vývoje území, tj. rozmístění funkce v území. Prostorově rozmístění funkcí ovlivňuje socio-ekonomické prostředí, které znova formuje dopravní model. Tato zpětnovazební smyčka je aplikována až do výhledového roku predikce modelu (více viz [5]).
4. POSTUP PŘI TVORBĚ ČTYŘSTUPŇOVÉHO DOPRAVNÍHO MODELU

Tvorba dopravního modelu se skládá z několika dílčích kroků, které na sebe navazují:

1. **Definice účelu dopravního modelu** - Účel dopravního modelu vychází z charakteru studie/analýzy, pro kterou je model vytvářen. Účel by měl být výsledkem dohody zástupců politické reprezentace (zadavatel modelu), odborníků z dopravně-plánovací praxe (uživatelé modelu) a specialistů na dopravní modelování (tvůrci modelu). V této počáteční fázi by mělo být také zvažováno budoucí využití modelu, neboť model obvykle neslouží pouze pro jednu studii.

2. **Parametry modelu** (prostorový, časový a modální rozsah modelu) - Z účelu modelu jsou odvozeny parametry modelu (územní rozsah, práce s časem, zonální struktura, dopravní mody, jednotky dopravní poptávky, atd.). Stanovení parametrů by mělo být výsledkem dohody uživatelů modelu a tvůrců modelu. V praxi mohou kroky 1 a 2 probíhat paralelně nebo se několikrát opakovat.

3. **Vstupní data** - Parametry modelu definují strukturu a rozsah potřebných vstupních dat, jejichž sběr nebo vytváření (pokud nejsou k dispozici) musí proběhnout ještě před realizací samotného dopravního modelu (tj. krokem č. 4). Sběr a tvorba dat představují z časového i finančního hlediska nejnáročnější část tvorby modelu. Definice struktury vstupních dat a všech následujících kroků je již plně v kompetenci tvůrců modelu, kteří své kroky konzultují s uživateli modelu.

6. **Validace** - Kalibrovaný dopravní model je prostřednictvím validace testován, zda poskytuje relevantní výsledky vzhledem ke skutečnosti. Testování se provádí oproti nezávisle získané množině dat (např. měřené intenzity dopravy), přičemž data použítá pro validaci by měla být jiná než data využitá pro kalibraci. Výsledky validace jsou kritériem kvality modelu a jako takové by měly být předloženy uživateli.

7. **Predikce** - Model validovaný pro současný stav může být využit jako výchozí podklad pro predikci vývoje dopravy v nulovém (vývoj situace bez opatření) nebo návrhovém scénáři. Vstupní parametry nulového i návrhového scénáře musí definovat uživatel a zadavatel modelu ve spolupráci s tvůrcem, který tyto parametry zapracuje (vývoj dopravní nabídky a nákladů na dopravu, vývoj dopravní poptávky a podkladových socioekonomických proměnných, apod.)

Celý tento postup nejlépe vystihuje následující diagram (obr. 4). Jednotlivé kroky jsou pak do detailu popsány v dalších kapitolách.

Obr. 05 Postup při tvorbě dopravního modelu
4.1. ÚČEL DOPRAVNÍHO MODELU

Před samotným začátkem modelování je zapotřebí znát, pro jaký účel je dopravní model vytvářen, tedy zjednodušeně řečeno jaké jsou požadavky na výstupy z modelu. Podle těchto požadavků jsou definovány vstupní parametry modelu (viz kap. 4.2). Níže jsou popsány nejčastější účely dopravních modelů, které jsou v praxi využívány. Modely dopravy jsou často tvořeny pro více účelů zároveň a mohou být znovu použity pro další činnost, jsou-li vlastnická a přístupová práva k modelu správně nastavena. Je však takřka nemožné spravovat jeden model, který by zachycoval všechny vztahy od makrourovně po mikrouroven.

<table>
<thead>
<tr>
<th>ÚČEL DOPRAVNÍHO MODELU</th>
<th>POPIS ÚČELU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dopravní model pro posouzení PK – uzavírky PK, obchvat města, určení kritických míst v infrastruktuce</td>
<td>Účelem takového modelu je zjistit, jaké změny plánovaná dopravní stavba nebo opatření vyvolá. V případě obchvatu je cílem, aby jej využívalo co nejvíce automobilů a tím došlo ke zklidnění dopravy ve městě. V případě uzavírky je cílem odhalit místa, kde hrozí největší kongesce po uzavření části komunikace. Tyto případy mají společné to, že jsou cílené především na automobilovou a silniční nákladní dopravu.</td>
</tr>
<tr>
<td>Dopravní model pro strategické a koncepční dokumenty (studie typu Dopravní generel, Územní plán, Plán udržitelné městské mobility apod.)</td>
<td>Strategické dokumenty typu plán udržitelné městské mobility, generel dopravy nebo územní plán svou obsahovou náplní koncipují dopravní systém města nebo regionu ve střednědobém až dlouhodobém horizontu. Standardní součástí těchto studií je analýza dopravního systému jako celku – nikoli jen jednotlivých módů izolovaně. Nástrojem této analýzy je právě dopravní model, který musí umět zahrnout i vliv vývoje města z hlediska vývoje obyvatelstva, rozvoje území a plánovaných změn dopravní infrastruktury. Je nutno vypracovat model multimodální, kde jednotlivé mody musí být vzájemně provázané příslušnými funkcemi. Model pro generel dopravy by měl umět odhadnout, zda např. opatření pro podporu VHD povede současně k redukci automobilové dopravy, zda např. při zrychlení linky VHD dojde k přesunu cestujících, kteří dosud používali jen automobil. Model dopravy by také měl umožnit posoudit dopady politických opatření, které změní finanční náklady dopravy.</td>
</tr>
<tr>
<td>Podklad EIA a environmentální posudky</td>
<td>Hlavním výstupem modelů pro EIA a environmentální posudky jsou podklady, které umožňují stanovení negativních dopadů na životní prostředí zpravidla pomocí dalšího odborníkových modelů (produkce emisí a rozptylová studie, hlukové modelování nebo analýza fragmentace krajiny). Tyto modely jsou proto zaměřeny přednostně na individuální automobilovou dopravu a silniční nákladní dopravu, zvláště pak na skladbu vozového parku (dynamická skladba) a vývoj intenzit dopravního toku v čase (např. v průběhu dne a noci).</td>
</tr>
<tr>
<td>Posouzení dopadu na PK po realizaci záměru</td>
<td>Výstavba nebo rozšíření zařízení bodového či plošného charakteru</td>
</tr>
<tr>
<td>Model zpoplatnění silniční sítě (regulace nákladní dopravy pomocí selektivního zákazu vjezdu a mýtného systému)</td>
<td></td>
</tr>
<tr>
<td>Model pro optimalizaci systému VHD</td>
<td></td>
</tr>
<tr>
<td>Silniční model pro HDM-4</td>
<td></td>
</tr>
<tr>
<td>Zavedení nízkoemisních zón</td>
<td>Nízkoemisní zóny (NEZ) patří mezi opatření, která regulují automobilovou dopravu. Od připadného zřízení NEZ si města a obce slibují snížení emisí z automobilové dopravy a v konečném důsledku zlepšení kvality ovzduší. Dopravní model v tomto případě slouží pro posouzení změny dopravních intenzit a dopravních výkonů po zřízení NEZ ve městě. Pro posouzení je nutné vytvořit multimodální dopravní model, jelikož NEZ cílí na změnu dopravního chování, jehož nedílnou součástí je volba dopravního prostředku. Nedílnou nástavbou modelu pro daný účel je modul pro výpočet emisí z dopravy a modul pro odhad dynamické skladby vozového parku.</td>
</tr>
<tr>
<td>Model pro studie proveditelnosti železničních staveb</td>
<td>Výstavba i rekonstrukce železničních staveb je (a měla by být) plánována tak, aby se zvýšila cestovní rychlost spojů i komfort cestujících ve vlacích a na nástupištích, včetně zkrácení doby přestupů. Cílem dopravního modelu je v tomto případě posoudit, jak se změní využívání železnice, zlepší-li se její parametry rekonstrukcí a také vyhodnotit snížení času či nákladů uživatelů železnice. Je-li předpokládáno signifikantní převedení dopravy na železnici z jiných módů (autobusová i automobilová doprava), musí být dopravní model multimodální.</td>
</tr>
<tr>
<td>Model pro studie proveditelnosti silničních staveb</td>
<td>Před výstavbou, rekonstrukcí či modernizací silničních staveb je v rámci studie proveditelnosti standardně prováděno hodnocení záměru z technického i ekonomického hlediska v rámci jednoho dopravního modelu. Specifikem dopravního modelu pro tento účel je nutnost zahrnout dostatečně velké území v okolí posuzované stavby, aby bylo možné zhodnotit všechny její přínosy, především převedenou dopravu ze stávajícího komunikačního sítě na novou trasu. Rozsah území proto závisí na specifické situaci posuzovaného záměru. Dopravní model může být unimodální i multimodální. Opět platí, že při využití unimodálního modelu nelze posuzovat výsledky hodnocení záměru ve vztahu k záměrům v rámci jiných dopravních módů.</td>
</tr>
<tr>
<td>Model dopravy Park and Ride</td>
<td>Je-li plánováno vybudování jednoho nebo několika záchytných parkovišť, je přirozeným cílem jejich co nejvyšší využití. Model dopravy by měl přispět k vybírání optimální lokality i kapacity pro výstavbu P&R parkoviště, a to s ohledem na přepravní vztahy v daném území. Vhodný je např. přístup tzv. „intermediárních zón“ (tj. lokalit potenciálně vhodných pro výstavbu záchytného parkoviště), kdy je zjišťováno, přes kterou lokalitu je přeprava způsobem Park and Ride nejvýhodnější, při minimalizaci přepravního času a přepravních nákladů (pro každý O-D pár).</td>
</tr>
<tr>
<td>Posouzení jedné či více křižovatek – mikrosimulace</td>
<td>Pro všeobecné zhodnocení kapacity, celkové funkce nebo otestování změn v organizaci dopravy na konkrétní pozemní komunikaci je výhodné použít simulační modely (mikrosimulace). V těchto modelech je uvažováno se všemi účastníky provozu včetně pěších a cyklistů. Posuzovat tak lze</td>
</tr>
</tbody>
</table>
křižovatky všech typů zahrnující i systémy řízení SSZ včetně dynamického
a preferenčního řízení, koordinace, přechodů pro chodce, inteligentní prvky
řízení, zastávky VHD, cyklopruhy atd.
Důležité je posuzovat vždy dostatečně velké území zahrnující více prvků
v jedné simulaci (křižovatek, přechodů apod.) a to tak, aby bylo dosaženo
efektu jejich vzájemného ovlivňování.
Při nezapočítání vlivu okolního prostředí nebo při simulaci jednotlivých
dílčích prvků sítě se mohou výsledky značně lišit.
Je také možné simulovat menší síť v jedné simulaci (křižovatek, přechodů
apod.) a to tak, aby bylo dosaženo efektu jejich vzájemného ovlivňování.
Důležité je posuzovat vždy dostatečně velké území zahrnující více prvků
v jedné simulaci (křižovatek, přechodů apod.) a to tak, aby bylo dosaženo
efektu jejich vzájemného ovlivňování.

4.2. PARAMETRY DOPRAVNÍHO MODELU (PROSTOROVÝ, ČASOVÝ A MODÁLNÍ
ROZSAH)

Na základě stanoveného účelu dopravního modelu tvůrce modelu navrhuje soubor parametrů
dopravního modelu. Pokud je dopravní model řešen v rámci výběrového řízení, měly by tyto
parametry vycházet ze zadávací dokumentace. Zpravidla se jedná o rozsah modelovaného území,
zonální strukturu, modelované dopravní módy, segmentaci modelované populace, časové období
a software. Navržené parametry musí tvůrce modelu konzultovat a shodnout se na nich se zadavatel
modelu a především s jeho uživatelem, který dokáže nejlépe specifikovat okruh analýz a studií,
kterým má dopravní model sloužit. Přičemž složitost a podrobnost dopravního modelu vychází
především z dostupnosti zdrojových dat.

Adékvalní složitost modelu lze definovat takto: příliš zjednodušený nebo příliš složitý model bude
poskytovat slabé výsledky. Příliš zjednodušený model obvykle nereflektuje všechny hlavní dopady
modelovaného jevu nebo je reflektuje velmi zjednodušeným způsobem. Příliš složitý model
poskytuje výsledky, u kterých modelář není schopen zjistit, zda jsou validní.

4.2.1 Rozsah zájmového území

Zájmové území dopravního modelu musí zahrnovat oblast, ve které se mohou projevit významné
změny v přepravních vztazích na základě opatření hodnocených dopravním modelem. Ovlivnění sítě
posuzovaným opatřením či stavbou lze samožejmě očekávat i mimo toto zájmové území, toto
ovlivnění by však zde mělo být minimální. Z tohoto důvodu by model měl zahrnovat i okolní území,
i když v nižší podrobnosti.

V případě všeobecných multimodálních modelů regionální či městské velikosti lze využít metodiku
vymezení vztahově uzavřených funkcí regionů [6] (tzv. Travel-To-Work-Areas – TTWA), což jsou
území či přesněji regiony vymezené na základě uzavřenosti prostorových vztahů pracovní dojíždky.
Algoritmus výpočtu regionu lze provést pro libovolnou úroveň vztahové uzavřenosti. Pokud je tedy
region vymezen na úrovni vztahové uzavřenosti rovně 80 % znamená to, že v rámci vymezeného
regionu je 80 % vztahů pracovní dojíždky realizováno v rámci tohoto regionu a pouze 20 % vztahů
směřuje mimo tento region. Podobný princip vymezování zájmového území pro dopravní model je doporučen i v rámci metodiky pro zpracování SUMPu [7].

V případě specifického zaměření modelů (např. posuzování záměrů výstavby nových pozemních komunikací) v praxi postačuje vymezení takové území, které zachycuje hlavní přepravní vztahy týkající se daného záměru.

4.2.2 Zonální struktura

Zóny v dopravním modelu jsou oblasti, které popisují část reálného světa z hlediska využití území a umístění na komunikační síti. V makroskopických modelech se užívá zonální struktury zpravidla na úrovni existujících administrativních jednotek (např. území obcí, ZSJ, statistické obvody apod.), za které je možné zjistit základní socioekonomické ukazatele (počet a struktura obyvatel, počet pracovních příležitostí apod.).

Zonální struktura by měla být stanovena na takové územní podrobnosti, aby zachytila změny v přepravních vztazích, které nastanou na základě vlivu posuzovaných opatření a záměrů hodnocených dopravním modelem.

V dopravním modelu má každý přepravní vztah zdroj a cíl cesty právě v jedné zóně, přičemž kombinace přepravních vztahů mezi všemi zónami navzájem lze nazvat maticí přepravních vztahů nebo též O-D maticí (Origin-Destination matrix).

Tab. 03 Výhody a nevýhody menších a větších zón (upraveno dle [3])

<table>
<thead>
<tr>
<th>MODEL S VÍCE ZÓNAMI (ZÓNY JSOU MENŠÍ)</th>
<th>MODEL S MĚNĚ ZÓNAMI (ZÓNY JSOU VĚTŠÍ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Výstupy jsou více podrobné</td>
<td>Kratší čas při výpočtu</td>
</tr>
<tr>
<td>Zóny jsou jednotné z hlediska využití území</td>
<td>Menší citlivost při detailním pohledu na síť</td>
</tr>
<tr>
<td>Méně intra-zonálních cest</td>
<td>Objem vstupních dat je pro každou zónu větší, je tedy statisticky více robustní</td>
</tr>
<tr>
<td>Je jednodušší zajistit, aby zónou neprocházela řeka či železnice</td>
<td>Jednodušší získání demografických dat</td>
</tr>
<tr>
<td></td>
<td>Je snadnější získat empirická data (ze směrových dopravních průzkumů)</td>
</tr>
</tbody>
</table>

4.2.3 Rozsah a detail dopravních sítí, dopravní mědy

Klíčovým parametrem dopravního modelu je počet zahrnutých dopravních módů, na základě kterého se odvíjí rozsah a detail dopravní sítě. V případě podrobné zonální struktury by i hustota dopravní sítě měla být vyšší, jinými slovy podrobnost dopravní sítě by měla reflektovat podrobnost zonální struktury. Do dopravní sítě by měla být zakomponována infrastruktura všech vybraných módů dopravy pro daný model (IAD, VHD, ND, pěší a cyklistická). Opět by mělo platit pravidlo, že použitá dopravní síť v modelu je v takovém rozsahu a podrobnosti, aby zachytily veškeré podstatné změny v přepravních proudech všech módů způsobené zprovozněním řešeného opatření.
4.2.4 Segmentace dopravní poptávky v dopravním modelu

Dopravní model osobní dopravy je postavený na dopravním chování obyvatel daného území, přičemž obyvatele je vhodné segmentovat alespoň do několika skupin. V případě modelování chování jedné homogenní skupiny model umožňuje posuzovat pouze opatření, která ovlivňují chování populace jako celku\(^2\).

V praxi se nejčastěji obyvatelstvo segmentuje:

- dle příjmu a dostupnosti dopravních prostředků (výše příjmu, počet dopravních prostředků),
- dle ekonomické aktivity\(^3\) (děti předškolního věku, žáci a studenti do 14 let, žáci a studenti 15 až 19 let, žáci a studenti nad 20 let, pracující, nepracující).

Segmentace obyvatelstva limitována dostupnými zdroji dat o obyvatelstvu. Na tomto místě je vhodné zdůraznit význam průzkumů dopravní poptávky (kap. 4.3.4), které jsou v praxi jediným možným zdrojem klíčových údajů týkajících se dopravního chování, tj. vybavenost dopravními prostředky, účely cest, volba dopravního prostředku apod.

Skupiny obyvatel (segmenty populace) v modelu cestují za něj různými účely. Dvojice účelů jsou získány z průzkumu dopravního chování obyvatel a představují cesty mezi dvěma místy. Nejčastěji se v dopravních modelech sledují cesty za prací a do škol, obchodní cesty a cesty za nákupem. Lze sledovat i jiné účely (např. volnočasové aktivity, návštěvy lékaře), v tomto případě je ale třeba mít data z dostatečně velkého průzkumu dopravního chování. Dvojice aktivit je většinou rozděluje podle počáteční cesty na Home-based (začínají v místě bydliště) a NonHome-based (začínající jinde než v místě bydliště).

Obr. 06 Znázornění segmentace dopravní poptávky

\(^2\) Příklad: Na dopravní opatření, které zvýší náklady na cestování (např. mýtné), bude homogenní skupina obyvatel reagovat jako celek stejně, ačkoli některé skupiny obyvatel (např. vysoko příjmové) jsou méně citlivé k zvyšování nákladů a své dopravní chování nezmění, zatímco nízkopříjmové skupiny obyvatel jsou citlivé k danému opatření a své dopravní chování změní.

\(^3\) Ačkoli je použit termín ekonomická aktivita, nejedná se o přesné kategorie ekonomické aktivity tak, jak je definuje metodika ČSÚ.
V některých případech dopravní modely nepracují s podrobnou segmentací populace. Jedná se především o zjednodušené modely, kde není dopravní poptávka generována z obyvatelstva, ale např. ze směrových průzkumů. O-D matice na této úrovni totiž nerozlišují jednotlivé segmenty.

4.2.5 Modelované časové období

Z důvodu zjednodušení modelování a i samotné práce s modelem (analýzy výsledků) je třeba výstupy modelu agregovat za určitý normovaný čas. Tím je zpravidla průměrný den v roce, za který je konstruován tzv. roční průměr denních intenzit (RPDI). Skutečnost je opět výrazně složitější, jelikož doprava je proměnná v průběhu celého roku, v průběhu týdne i v průběhu dne. Agregace výsledků za určité časové období opět odráží české časové období musí být definováno se spoluprací s uživatelem modelu. V případě nutnosti posuzování dopravních opatření, která pracují s roční, týdenní nebo denní variací času nebo jsou platné pouze v určité hodiny, dny v týdnu či období v roce, je třeba zvážit agregaci výsledků za příslušné časové intervale tak, aby byly zachyceny denní, týdenní či roční variace.

Přepočet výsledků modelu na RPDI má i praktické důvody, jelikož Celostátní sčítání dopravy je přepočítáváno právě na tento normovaný ukazatel, a výsledky jsou pak s modelem srovnatelné (lze je použít pro kalibraci či validaci).

V přetížených dopravních sítích ve velkých městech, kde často dochází k překračování kapacity silniční sítě a dopravním konges, je vhodné modelovat období dopravní špičky (ranní a odpolední) než období 24 hodin. Model dopravní špičky je v těchto případech přesnější, neboť lépe odráží vztah intenzita – kapacita, tedy zpomalení až zastavení dopravního proudu a s tím spojené hledání nových tras) vlivem dosažení nebo překročení kapacit. Kapacitní výpočty úseků nebo křižovatek počítají s hodinovou kapacitou, zatímco 24 hodinové modely musí pracovat s „denní kapacitou“ což je údaj velmi nepřesný.

4.2.6 Výběr nástroje

Na trhu je dnes poměrně velké množství softwarevých balíčků, které poskytují nástroje pro tvorbu dopravního modelu, a kritérií pro výběr toho vhodného je celá řada. Pro zadavatele je nejpodstatnější, zda software použitý pro konkrétní zhotovovaný dopravní model umí pracovat s daty a vytvořit požadované výstupy v kvalitě a rozsahu odpovídající účelu modelu. Většina multimodálních dopravních modelů je dnes zpracovávána tradičním sekvenčním čtyřstupňovým
modelem a většina softwaru dnes pracuje tak, aby čtyřstupňový model zjednodušila a zautomatizovala. Tim je například omezeno širší využití modelů aplikujících Activity-based přístup, který vyžaduje zečela jinou architekturu SW.

Existuje také možnost některé části dopravního modelu zpracovat bez specializovaného softwaru, podmínky pro takový případ jsou však striktně dané. Dopravní model lze nahradit logitovým modelem spočítaným mimo specializovaný software.

Příklad: Logitový model vypočítává dělbu přepravní práce mezi dvěma i více módů, zkoumá, jak na změny dopravní nabídky reaguje přepravní poptávka a vypočítává tak převedenou dopravu. Tento postup je však možný pouze pro zjednodušenou prognózu v malém území, ve které jsou jednoznačně dané přepravní proudy a nepředpokládá se zásadní ovlivnění území a tedy ani významný přesun zboží či cestujících vlivem zprovoznění nového opatření/stavby.

4.3. VSTUPNÍ DATA

I přesto, že s vývojem výpočetní techniky je možné tvořit detailnější modely, relevantnost dopravního modelu je stále závislá zejména na kvalitě a zpracování vstupních dat a dat určených pro kalibraci a validaci modelu. Při výběru dat, která se budou v dopravním modelu využívat, je zapotřebí dbát na aktuálnost a podrobnost dat, dále také na jejich celistvost a metody sbírky.

Pro vytvoření čtyřstupňového dopravního modelu jsou zpravidla potřebné následující datové vstupy:

- data o dopravní síti (silniční síť, železniční, síť, pěší a cyklistická síť, jízdní řády a trasy linek veřejné dopravy)
- data o využití území (vlastnosti zástavby v území z hlediska atraktivity návštěvnosti)
- demografická a socioekonomická data (počet obyvatel, ekonomická aktivita, stupeň automobilizace a motorizace atd.)
- data o dopravním chování obyvatelstva (informace o cestách, tedy kam, kdy a za jakým účelem lidé cestují)
- data o nákladní dopravě (zdroje a cíle cest nákladní dopravy, přepravní vztahy v nákladní dopravě)
- sčítání dopravy a cestujících a jiné dopravně-inženýrské průzkumy (směrové průzkumy, sčítání ve veřejné dopravě, sčítání dopravy v klidu, průzkumy kvality dopravy – cestovní časy, rychlost vozidel apod.)
- data pro konstrukci predikce (data o socioekonomických a demografických poměrech ve společnosti, data o ekonomicko-politických poměrech a data o poměrech v dopravních systémech v určitém scénáři vývoje)

4.3.1 Dopravní síť

Dopravní síť tvoří základ pro modelování dopravního zatížení. Rozsah a podrobnost síti je závislá na požadavcích na přesnost modelu [8]. Data o dopravních sítích jsou v ČR poměrně dobře rozšířená, avšak v různé kvalitě. Ve většině případů chybí důležitá data o kapacitě komunikací, maximální rychlosti, počtu jízdních pruhů a křižovatkových pohybů.

Podrobnost údajů o dopravní síti se může pro každý model lišit dle účelu modelu, pro který je model navrhován. Potřebná data jsou závislá na detailu celé dopravní síti, zvolené dle účelu dopravního modelu [1]. Obecně platí, že do modelu je zahrnuta vždy dopravní síť pro každý dopravní mód, který je do modelu zakomponován. Příklad: Při zahrnutí pěší a cyklistické dopravy by měl model obsahovat i pěší zóny, cyklostezky a další související infrastrukturu.

Dopravní síť v modelu a jejích podklady spravuje v rámci ČR několik společností. Kvalitu dat garantuje vždy pověřené úřady. V ČR existuje veřejně dostupná účelová datová základna o VHD v rámci Centrálního informačního systému o jízdních řádech (CIS JŘ), kterou spravuje MD a vlastní a provozuje společnost CHAPS spol. s r.o. V rámci databáze jsou uchovávány informace o jízdních řádech státem garantovaných linek provozovaných soukromými i veřejnými dopravci v závazku veřejné služby. Další informace, konkrétně údaje o polohách zastávek VHD, aktuální poloze vozidel, nástupištích, výlukách, nehodách
a zpožděních v CIS JŘ aktuálně chybí a závěry odborné veřejné diskuze v rámci zelené a bílé knihy o VHD (ZK, 2014, BK 2015) jasně definovaly požadavek zakomponovat zmiňované údaje do centrální databáze. Diskuze zároveň poukázaly na problematické získávání otevřených dat z CIS JŘ pro jiné, než veřejné subjekty, což bylo vyřešeno zveřejněním databáze CIS JŘ.

Se zvyšováním výpočetních možností počítačů je možné provádět výpočty přístupem Timetable-based i pro poměrně rozsáhlá území [8]. Jiným slovy, každému vozidle je přidělen čas odjezdu a přijezdu, sled zastávek, čekací doby apod. Jízdní řády a frekvence spojů jsou získávány zejména z internetových stránek jednotlivých dopravců aktualizovaných v daném období nebo ze zmiňovaného CIS JŘ.

4.3.2 Data o využití území

Data o využití území poskytují kvalitativní informace a statistiky o tom, jak se jednotlivé plochy (zóny) v území využívají. Na základě těchto údajů se určuje tzv. atraktivita území, která je přímo úměrná množství osob, jež do dané zóny cestují. Atraktivita území se určuje vždy v kontextu jednotlivých účelů cest. Příklad: Průmyslová zóna bude mít vysokou atraktivitu z hlediska cest za práci, zatímco plavecký bazén bude atraktivní z pohledu volnočasových cest.

Data je nutné získat z mnoha rozličných zdrojů, jelikož neexistuje jednotná databáze dat tohoto charakteru. Základním zdrojem informací jsou databáze na evropské úrovni (např. UrbanAtlas spravovaný EEA), územně analytické podklady ORP a krajů (ÚAP), územně plánovací dokumentace, tj. zásady územního rozvoje krajů, územní plány obcí a územní studie, městská a obecní statistika spravovaná ČSÚ, databáze o hromadných ubytovacích zařízeních spravovaná ČSÚ, rejstřík škol a školských zařízení [12], interní databáze měst a obcí, databáze soukromých subjektů (např. o maloobchodních jednotkách, službách a zařízeních) a konečně otevřené databáze (např. údaje o počtu pracovních míst) nebo specializovaným mapováním v terénu případně na webu. Zpravidla se jedná o doplňování informací o sportovištích, školách a dalších atraktivních místech v zájmovém území.

4.3.3 Demografická a socioekonomická data

Údaje o obyvatelstvu a jeho charakteristikách slouží jako základní zdroj informací o velikosti a struktuře dopravní poptávky v osobní dopravě v rámci dopravního modelu. Data tohoto typu poskytují zpravidla národní nebo mezinárodní statistické úřady. Na evropské úrovni je to EUROSTAT, který poskytuje spíše agregované údaje za území nebo tematické kategorie. V České republice je to Český statistický úřad (ČSÚ), který poskytuje informace o obyvatelstvu včetně vybraných charakteristik o pohlaví, věku, ekonomické aktivitě, vzdělání a bydlení. Ve specifických případech jsou dále využívána data o obyvatelstvu, která mají k dispozici města

5 Například databáze OpenStreetMap.
a obce. Jedním ze základních datových zdrojů je celostátní Sčítání lidu, domů a bytů, které se v České republice provádí jedenkrát za 10 let.

Údaje o obyvatelstvu a jeho charakteristikách slouží ke stanovení dopravní poptávky dle definovaných segmentů poptávky v dopravním modelu (viz kap. 4.2.4).

4.3.4 Průzkumy dopravní poptávky

Průzkumy dopravní poptávky doplňují chybějící informace o charakteristikách obyvatelstva z hlediska dopravního chování modelované populace. Údaje poskytované národními a mezinárodními statistickými úřady zpravidla neobsahují informace související s dopravním chováním. Pomocí průzkumů jsou proto zjišťovány zvlášť informace o vybavenosti domácností dopravními prostředky a informace o cestách (délky cest, četnost v průběhu dne, denní doba, volba dopravního prostředku, destinace a především účel cesty). Ze zjištěných údajů je konstruován ukazatel přepravního potenciálu (Trip Rate) a v kombinaci s daty o obyvatelstvu (kap. 4.3.3) ukazatel velikosti dopravní poptávky (produkce zón).

Průzkumy dopravní poptávky jsou prováděny výběrovým šetřením na vzorku modelované populace (výběrový soubor). Časový a geografický rámec průzkumu reflektuje rozsah zájmového území (kap. 4.2.1), zonální strukturu (kap. 4.2.2) i časové období dopravního modelu (kap. 4.2.5).

Průzkum dopravního chování

Průzkum dopravního chování představuje specifickou formu dotazníkového šetření, v rámci něhož jsou členové vybraných domácností dotazováni na své dopravní chování a další ukazatele popisující cílovou skupinu. Sestávají se z informací o domácnosti (např. vlastnictví dopravních prostředků), jednotlivcích (např. vlastnictví zlevněného či zvýhodněného jízdného na VHD) a cestovního deníku. Ten obsahuje všechny cesty v předem vybraném dni (či dnech), jejich účel, použitý dopravní prostředek a čas a místo začátku a konce. Aby byl průzkum reprezentativní, tj. aby bylo možné generalizovat výsledky ze vzorku na populaci, musí být zajištěn pravděpodobnostní výběr respondentů (např. stratifikovaný náhodný výběr).

Návrh samotného průzkumu by měl být zpracován dle certifikované metodiky „Metodika aktivitně-cestovního průzkumu“ [13], pro zajištění kompatibility nejen s jinými průzkumy realizovanými v ČR, ale i s průzkumy v Rakousku nebo Německu. Na začátku návrhu je zapotřebí nastavit několik klíčových vstupů pro celý průzkum (např. definice zkoumané populace včetně jejího prostorového vymezení, určení velikosti vzorku vycházející z nejvyšší přípustné absolutní i relativní výběrové chyby pro zkoumanou poptávkovou vrstvu či metody sběru dat). Tyto vstupy od zadavatele by měly být ve shodě s hlavními otázkami, na které je zapotřebí dopravním modelem odpovědět. Mezi základní otázky při návrhu průzkumu může patřit např.:

• Jaký je počet obyvatel ve sledované oblasti?
• Které módy dopravy má dopravní model zahrnovat?
• Jaké socio-demografické kategorie mají být postihnutý dopravním modelem? Tyto proměnné bude třeba predikovat i v návrhovém stavu.
• Jaký časový úsek má dopravní model hodnotit?
• Jaká opatření mají být modelem posuzována?
Návrh průzkumu dle výše zmíněné metodiky pak definuje sběr všech dat významných pro stavbu dopravního modelu.

Obr. 08 Odkud, kam, za jakým účelem a jakým dopravním prostředkem lidé cestují?

Průzkum vyjádřených preferencí

Kromě klasických průzkumů dopravního chování, kdy respondentům nejsou při dotazování předkládány žádné alternativy, a je pouze zjišťováno současné dopravní chování respondentů (Revealed Preferences – odhalené preference), existuje i druhý přístup, kdy je zjišťováno hypotetické chování respondenta, resp. jeho vyjádřené preference pro určité hypotetické situace (Stated Preferences). V tomto typu průzkumu respondent porovnává kvalitu volby vzhledem k předloženým variantním možnostem [14]. Průzkum vyjádřených preferencí se využívá například pro zjištění zájmu o využití nového dopravního prostředku, dopravní služby nebo dopravního opatření, které v daném území zatím neexistují a neexistuje tedy ani zkušenost, jak budou obyvatelé na dané situace reagovat (např. zavedení služeb carsharing a bikesharing, parkovací politika, systém P+R nebo P+G, zřízení nízkoemisní zóny, selektivního zákazu vjezdu, zpoplatnění vjezdu nebo výkonové zpoplatnění jízdy apod.).

Základním kamenem průzkumu vyjádřených preferencí je scénář hypotetické situace, který je tvořen alternativami mezi kterými respondent volí. Alternativy jsou od sebe jednoznačně oddělené, mají diskrétní povahu a měly by vyčerpávat všechny relevantní možnosti volby. Scénář by, pokud je to možné, měl být volen tak, aby alternativ nebylo příliš velké množství. Větší množství možných alternativ vyžaduje použití tzv. Nested přístupu, nebo dokonce GEV modelů, což způsobuje jisté problémy [15].

4.3.5 Vstupní data pro modely nákladní dopravy

Data o dopravní nabídce pro modely nákladní dopravy

Data o dopravní nabídce pro modely nákladní dopravy jsou obdobného rozsahu jako data pro modely osobní dopravy. Součástí jsou údaje o dopravní síti, konkrétně o sítí pozemních komunikací včetně dalších specifických atributů pro nákladní dopravu (např. nosnost, omezení jízdy, kapacita pro nákladní dopravu, mýtné apod.) a dále údaje o parkovací infrastruktury či stanicích s pohonnými hmotami, pokud to charakter modelu nákladní dopravy vyžaduje.
Data o přepravní poptávce pro modely nákladní dopravy

Data pro přepravní poptávku jsou pro osobní a nákladní dopravu odlišná. Jedná se zejména o rozdíl při stanovení přepravní poptávky ve formě celkové O-D matice, kterou je vhodnější stanovovat na základě průzkumů než na základě gravitačního modelu. Záleží však na dostupnosti, aktuálnosti a struktuře vstupních dat. Nárůty na vstupní data přepravní poptávky se liší podle typu modelu.

Unimodální model: ve většině případů se jedná o model silniční dopravy. Z hlediska požadovaných vstupních dat je tento model nejúnavodnější. Přepravní poptávku lze sledovat buď jako jednu matici nákladních vozidel, nebo v podrobnějším členění na matici pro lehká nákladní vozidla a těžká nákladní vozidla. Členění může být samozřejmě ještě podrobnější (autobusy, traktory apod.).

Poptávkovou matici lze stanovit nejlépe na základě směrového dopravního průzkumu, který je tedy nutné vykonat, nebo převzít jako podklad.

Případně je možné použít gravitační model na základě odhadu produktivit a atraktivit zón nákladní silniční dopravy ve řešené oblasti a následně kalibrovat na dostupné hodnoty sčítání dopravních intenzit. Zdrojem kalibračních intenzit jsou pro silniční modely výsledky celostátního sčítání dopravy. Pokud nejsou v řešené oblasti k dispozici dostatečné podrobnosti, je vhodné použít data z dopravních detektorů. Pokud nejsou ani tato data, je nutné vykonat vlastní sčítání dopravních intenzit.

Multimodální model (dvoustupňový): pro tento model jsou nutným vstupem poptávkové matice dle komoditních skupin, a to buď z dostupných statistik, nebo z vlastního průzkumu. Z tohoto důvodu není nutné provádět první dva kroky výpočtu, tedy tvorbu a distribuci cest. Pro výpočet modelu délby přepravní práce je nutné nejprve stanovit generalizované náklady módu, tedy ohodnotit náklady na přepravu mezi zdrojem a cílem pro hodnocené módy a komodity. Na základě citlivosti jednotlivých komoditních skupin na generalizované náklady je poté vypočítána délba přepravní práce. Modely železniční nákladní dopravy mají obvykle další krok mezi délbu přepravní práce a zatěžováním, kdy je náklad alokován do vlaků podle jejich typů a atributů.

Pro přiřazení na síť je nutné mít informace o dopravní nabídce jednotlivých módu, a to zejména o následujících charakteristikách: vedení, kapacita, povolené dopravní systémy, místní, poplatek za dopravní cestu, sklonové poměry, délky staničních kolejí a možnosti překládky, a to pro stávající i plánovaný stav. Pro kalibraci zatížení modelu je nutné znát hodnoty objemů dopravy na dopravní síti pro hodnocené módy ze sčítání dopravy.

Multimodální model (čtyřstupňový nebo pětistupňový): pro čtyřstupňový model je oproti předchozímu modelu je nutné provést navíc výpočty tvorby a distribuce cest. Budou tedy nutné data pro tyto výpočty. Další kroky výpočtu a nutných vstupních dat jsou shodné s předchozím popsaným typem modelu.

Pro výpočet tvorby cest je nutné znát pro každou zónu a komoditní skupinu atributy vázané na produktivitu a atraktivitu, tedy např. na těžbu, výrobu a spotřebu (např. výroba automobilů, prodej automobilů). Pokud mají být vstupy pro následující krok rozdělení cest popsány adekvátně, je nutné popsat vznik cest pro relevantní území, kde mohou vznikat přepravní vazby, tedy nezřídka i v zahraničí.

4.3.6 Sčítání dopravy a cestujících a jiné dopravně-inženýrské průzkumy

Pro kalibraci a validaci modelu je zapotřebí použít data, která reprezentují výkony dopravní poptávky. Jedním ze zdrojů dat jsou dopravní sčítání a směrové průzkumy dopravy, sčítání ve veřejné dopravě a sčítání dopravy v klidu.

Z časového hlediska probíhají sčítání průměrného pracovního dne standardně v úterý, ve středu nebo ve čtvrtek v měsících od března až červen a září až říjen. V ideálním případě sčítání probíhá 16 hodin v čase od 5 do 21 hod. Při 16-ti hodinovém měření v uvedených dnech se zjištěné hodnoty intenzit přibližují hodnotě ročního průměru denních intenzit (RPDI).

Rekreační (víkendová) doprava se sleduje obvykle v pátek mezi 14 a 18 hod a v sobotu od 6 do 10 hod. Sobotu a neděle mezi 17 a 21 hod je naopak považována jako doba, ve které se nejčastěji dochází k dopravním přesunům z víkendových rekrecí. V některých případech je zapotřebí provádět 24 hodinový průzkum, aby bylo možné určit rozdíl mezi denním a nočním provozem.

Sčítání je standardně prováděno na profitech pozemních komunikací (např. Celostátní sčítání dopravy [16], data z automatických sčítačů, sčítání cyklistů) a výsledná hodnota dopravních intenzit je přepočítána na normovanou hodnotu (RPDI).

Sčítání dopravy se provádí za účelem získání údajů o velikosti dopravních intenzit, jejich struktuře a variantích v čase. Postup získání dopravních intenzit je uveden ve TP 189 - Stanovení dopravních intenzit na pozemních komunikacích [17].

Sčítání dopravy lze provádět několika metodami:

- prostřednictvím pozorovatele (čárková metoda, záznam SPZ, přímý dotaz, sčítací lístky atd.)
- prostřednictvím pozorovatele a přístrojové techniky (např. videozáznam)
- prostřednictvím automatických sčítačů dopravy (ASD)

Sčítání dopravy na pozemních komunikacích zjišťuje intenzity automobilové dopravy (např. pro model obchvatu města), veřejné hromadné dopravy (např. model optimalizace provozu MHD), cyklistické dopravy (např. model v rámci plánu udržitelné městské mobility) nebo pěší dopravu (např.

Směrové průzkumy

Směrový průzkum slouží ke zjištění zdrojů a cílů přepravních vztahů v zájmovém území. Na rozdíl od sčítání dopravy zjišťuje nejen intenzity přepravních vztahů, ale především jejich geografické úkotvení (směrovost). Výstupy směrového průzkumu jsou využívány při kalibraci dopravních modelů a/nebo pro sestavení „empírických“ matic dopravních/přepravních vztahů. Mohou však být i základem dopravního modelu, v případech tzv. hybridních dopravních modelů. Pro stanovení současného stavu dopravy jsou u těchto modelů použity zjištěné hodnoty přepravních proudů a/dopravních průzkumů a je k nim pouze přičítána rozdílová budoucí poptávka, zjištěná klasickým čtyřstupňovým postupem či predikcí dopravy.

Průzkum se provádí např. dotazníkovým šetřením nebo metodou záznamu RZ. Rozsah směrového průzkumu je možno provádět v jednotlivých křižovatkách nebo na ploše celého zájmového území [18], pro které je tvořen dopravní model. V rámci větších měst probíhají kontinuální směrové průzkumy a sčítání dopravy (Praha, Plzeň, Brno) v rámci města právě metodou záznamu RZ. V rámci celé ČR lze pro analýzu směrovosti toků nákladní dopravy využít data z mýtných bran.

Sčítání ve veřejné dopravě

Pro potřeby tvorby modelu je vhodné získat alespoň data o přepravních objemech, přepravních vztazích, obratovosti a přestupních vztazích cestujících v rámci terminálů VHD. Tato data se získávají primárně na základě dopravních průzkumů ve veřejné dopravě [18].

Dopravní průzkum přepravních zátěží na linkách VHD se provádí systémem sčítání nástupů a výstupů osob a počtů cestujících ve vozidlech. Do průzkumu jsou zahrnuta všechna vozidla vždy od ranního výjezdu až po návrat do vozovny.

Průzkumy cestujících jsou obvykle prováděny za použití jedné z následujících technik nebo kombinací:

- průzkum přímo ve vozidle (tazatel ve vozidle)
- průzkum ve stanici (tazatel na zastávce)
- průzkum pomocí dotazníků (tazatel na zastávce, internetový dotazník)
Výsledkem jsou počty cestujících v jednotlivých linkách veřejné dopravy na sčítacích profilech, počty nastupujících a vystupujících osob za časovou jednotku na sčítaných zastávkách a informace o přepravních vztazích osob.

Dopravní průzkumy směrových vztahů a přestupních vazeb jsou obvykle realizovány dotazováním cestujících. Za účelem sledování běžných dopravních charakteristik je potřeba provést průzkum v čase od 5:00 do 9:00 v ranní špičce a v odpolední špičce od 15:00 do 19:00. Období dopravní špičky se může měnit dle lokálních specifik města (velikost, využití území – počet průmyslových zón, atd.).

V průzkumu je třeba dosáhnout požadované velikosti vzorku, která se stanoví na základě celkového přepraveného objemu cestujících. Metodika provádění průzkumu je stanovena tak, aby získávání vzorku bylo rozloženo rovnoměrně na síť linkového vedení a velikost vzorku pro účely přepočtu na celkové hodnoty byla dostatečně vypovídající.

Problém při získávání dat o veřejné hromadné dopravě bývá právě neochota dopravců poskytovat data o počtech přepravených cestujících, míře obsazenosti vozidel atd. Tato data mají obvykle charakter obchodního tajemství. Lze-li očekávat problémy se získáním kvalitních dat, je vhodné provést vlastní průzkumy a nespoléhat se na existující data společností provozujících veřejnou dopravu.

Sčítání dopravy v klidu

Dalším způsobem získání dat o dopravě je sčítání statické dopravy, tedy parkování a odstavování vozidel. Průzkumy parkování poskytují podklady pro stanovení maximální využitelnosti stávajících parkovacích kapacit, stávající využívání parkovacích kapacit a zjištění případného „převisu“ parkovacích nároků nad parkovací kapacitou. V rámci průzkumu je třeba vždy provést mapování skutečného stavu parkovacích míst [18].

Oblast, pro kterou je průzkum prováděn reflektuje velikost zájmového území modelu. Naměřené hodnoty jsou agregovány ideálně za zóny dopravního modelu. V průzkumu se sleduje délka parkování tak, aby mohlo být rozlišeno např. krátkodobé parkování od celodenního parkování nebo aby byly odhaleny denní variace vytížení parkovacích kapacit.

Průzkumy kvality dopravy – cestovní časy, bodová/úseková rychlost vozidel

Pro analýzu dopravního proudu v místech, kde se tvoří kongresce, se v městských modelech často využívají data o kvalitě dopravy jako např. cestovní časy či bodová/úseková rychlost vozidel.

Pro získání dat o cestovním čase se využívají plovoucí vozidla, kdy jedno nebo několik vozidel v průběhu analyzovaného intervalu projíždí opakovaně vybranou trasu a zaznamenává cestovní čas. Set zjištěných cestovních časů se pak statisticky vyhodnotí [19].

Bodovou/úsekovou rychlost lze také měřit plovoucím vozidlem v kombinaci se záznamovým zařízením s GPS. Mnohem širší databázi lze ale získat ze záznamů smyček umístěných ve vozovce příp. z jiných typů trvale zabudovaných/umístěných detektorů [19].
4.3.7 Data pro konstrukci predikce

Mezi data pro konstrukci predikce lze zařadit údaje a ukazatele z těchto tří základních skupin dat:

1. socioekonomický a makroekonomický vývoj
 - vývoj HDP
 - prognóza počtu obyvatel a budoucí struktura obyvatelstva
 - vývoj počtu pracovních míst
 - vývoj nezaměstnanosti
 - vývoj úrovně automobilizace
 - vývoj dopravního chování z hlediska délky a četnosti cest, volby dopravního prostředku a účelů cest
 - další relevantní data pro zdroje a cíle cest (např. dle modelových zón předpokládané budoucí počty míst ve školách a universitách, velikost maloobchodních, rekreačních, průmyslových ploch různých typů atd.)

2. ekonomicko-politický vývoj
 - sazby spotřební daně, silniční daně, ekologické daně a poplatky (např. parkování, poplatky za vjezd)
 - sazby daní zatím do legislativy nezavedených
 - dotační opatření na podporu rozvoje vybraných dopravních technologií (šrotovné, dotace na vozidla s alternativními pohony apod.)

3. dopravně-ekonomický vývoj
 - rozvoj území a dopravní infrastruktura (plánované stavby ve sledovaném území a v jeho okolí)
 - intenzita přeshraniční dopravy (myšleno přes hranici zájmového území modelu)
 - poplatek za užití dopravní cesty v železniční dopravě
 - poplatek za užití pozemních komunikací (mýto, dálniční známky, výkonové zpoplatnění)
 - nastavení systému veřejné dopravy
 - počet a typ parkovacích míst

Všechny výše uvedené skupiny dat mohou reprezentovat hypotetický stav věcí v budoucnu nebo určitým scénáři vývoje. Pro tvorbu predikčního dopravního modelu je třeba získat nebo modelovat tato data pro vjedový referenční stav v budoucnu nebo scénář vývoje reprezentující implementaci dopravních opatření a dopravních politik, tedy alternativní stav (viz kap. 4.7).
4.3.8 Potřebné průzkumy v závislosti na účelu dopravního modelu

Průzkumy dopravní poptávky jsou klíčová vstupní data pro tvorbu dopravních modelů. Níže v tabulce jsou uvedeny příklady účelů dopravních modelů a potřebnost průzkumů pro jejich realizaci.

<table>
<thead>
<tr>
<th>ÚČEL DOPRAVNÍHO MODELU</th>
<th>PRŮZKUM DOPRAVNÍHO CHOVÁNÍ</th>
<th>PRŮZKUM VYJÁDŘENÝCH PREFERENCÍ</th>
<th>SMĚROVÝ ČI JINÝ PRŮZKUM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dopravní model pro posouzení PK</td>
<td>Není třeba v případě, že se posuzuje pouze změna trasování</td>
<td>Není třeba</td>
<td>Ano, pro zjištění objemů tranzitní dopravy</td>
</tr>
<tr>
<td>Dopravní model pro strategické a koncepční dokumenty</td>
<td>Ano</td>
<td>Ano, pokud jsou modelovány změna parkovací politiky nebo nové dopravní módy a podobná opatření, která zahrnuje rozhodování lidí, které v současnosti jejich dopravní chování neovlivňují.</td>
<td>Ano, pro kalibraci modelu a zahrnutí tranzitu</td>
</tr>
<tr>
<td>Podklad EIA a environmentální posudky</td>
<td>Pro samotnou EIA není potřeba. Záleží na tom, jaký dopad na rozhodování lidí má situace, která se modeluje.</td>
<td>Pro samotnou EIA není potřeba. Záleží na tom, jaký dopad na rozhodování lidí má situace, která se modeluje.</td>
<td>Pro samotnou EIA není potřeba. Záleží na tom, jaký dopad na rozhodování lidí má situace, která se modeluje.</td>
</tr>
<tr>
<td>Posouzení dopadu na PK po realizaci záměru bodového či plošného charakteru</td>
<td>Ano, v závislosti na charakteru záměru.</td>
<td>Není třeba</td>
<td>Ano, pro kalibraci modelu a zahrnutí tranzitu</td>
</tr>
<tr>
<td>Model zpoplatnění silniční sítě</td>
<td>Není potřeba, pokud nespoplatněná alternativa je nasnadě bez ohledu na zdroj a cíl cesty.</td>
<td>Ano, pokud je potřeba zjistit hodnotu času (VT - Value of Time), se kterou počítají modely zpoplatnění komunikací. Pro modelování vlivu zákazů vjezdu není SP průzkum potřeba.</td>
<td>Stačí intenzity dopravy</td>
</tr>
<tr>
<td>Název</td>
<td>Model pro optimalizaci systému VHD</td>
<td>Silniční model pro HDM-4</td>
<td>Zavedení nízkoemisních zón</td>
</tr>
<tr>
<td>-------</td>
<td>----------------------------------</td>
<td>-------------------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td></td>
<td>Není třeba</td>
<td>Není třeba</td>
<td>Není třeba</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pokud bude modelována například obměna vozového parku</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Směrový průzkum, zaměřený na cesty do zvažované zóny.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Model pro studie proveditelnosti železničních staveb</td>
<td>Je lepší ho mít kvůli modelování přestupu na železnici.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Podle situace. Obvykle není třeba</td>
<td>Pokud není proveden průzkum dopravního chování, pak data z SP průzkumu pomohou modelovat přesun na železnici.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sčítání ve VD společně s dotazem na vstupní a výstupní zastávku.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Model pro studie proveditelnosti silničních staveb</td>
<td>Podle situace. Obvykle není třeba</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Podle situace. Obvykle není třeba</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Model dopravy Park and Ride</td>
<td>Ano, pro zjištění potenciální poptávky po přepravě typu Park and Ride</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ano, pro zjištění cítlivosti na cenu.</td>
<td></td>
<td>Data o parkovacích kapacitách a využití těchto kapacit</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Posouzení jedné či více křižovatek – mikrosimulace</td>
<td>Není třeba</td>
<td>Není třeba</td>
</tr>
</tbody>
</table>
4.4. TVORBA ČTYŘSTUPŇOVÉHO DOPRAVNÍHO MODELU

Princip čtyřstupňového dopravního modelu vznikl v šedesátých letech a je používán dodnes jako nejrozšířenější metoda dopravního modelování osobní dopravy. Tradiční postup využívají takzvané sekvenční modely, které postupně odpovídají na otázky vázané k jednotlivým krokům výpočtů dopravního modelu [20].

Obr. 09 Kroky čtyřstupňového modelu

<table>
<thead>
<tr>
<th>Vykonám cestu?</th>
<th>Kam budu cestovat?</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Vznik cest: v prvním kroku čtyřstupňového modelu dochází k rozhodnutí, kolik cest v zóně vnikne a kolik cest v zóně končí. Příklad: Ve dvou obytných zónách vznikne 4+7 cest za prací, dvě průmyslové zóny mají 8+3 pracovních míst.

Rozdělení cest: v druhém kroku se rozhoduje, odkud kam jednotlivé cesty vedou. Příklad: z menší obytné zóny půjdou za prací 3 osoby do větší průmyslové zóny a jedna osoba do menší.

<table>
<thead>
<tr>
<th>Čím budu cestovat?</th>
<th>Kudy pojedu?</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Volba dopravního prostředku: ve třetím kroku se rozhoduje, kterým dopravním prostředkem budou cesty vykonány. Příklad: z menší obytné zóny pojedou do větší průmyslové zóny dvě osoby autem a jedna osoba na kole.

Zatížení sítě: ve čtvrtém kroku se rozhoduje, kudy budou jednotlivé cesty vykonány. Příklad: z menší obytné zóny do větší průmyslové zóny zvolí stejnou trasu kolo a auto. Pro druhý vůz je výhodnější alternativní trasa.
Sekvenční přístup však popisuje proces vedoucí k vykonání cesty zjednodušeně. Více odpovídají realitě tzv. simultánní modely, kde jsou některé kroky dopravního modelu vyhodnocovány současně a vzájemně se podmiňují (např. kam pojedu a čím). Ty jsou však náročnější na množství vstupních dat, proto sekvenční modely v současné době představují minimální standard.

4.4.1 Vznik cest

Vznik cest (Trip Generation) je první etapou z klasického čtyřstupňového dopravního modelu. V tomto kroku dochází k určení zdrojových a cílových proudů. Úkolem je pokusit se co nejpřesněji určit celkový počet cest vznikající v každé zóně (produkt dopravní poptávky), bez ohledu na to odkud/kam tyto cesty vedou. Tato fáze modelu odpovídá na otázku, kolik cest vzniká v každé zóně [21]. Hodnoty vycházejí z průzkumu dopravního chování a jsou obvykle založeny na teoretickém modelu s použitím socioekonomických proměnných, které jsou kalibrovány obvykle pomocí statistické analýzy ze skutečnými nebo vyvozenými údaji o objemu cest z/do dané zóny.

Při tvorbě modelu je možné se setkat se dvěma druhy dopravní poptávky, a to apriorní (poptávka neovlivněná existující nabídkou), nebo aposteriorní (poptávka ovlivněná existující nabídkou). Při určování zdrojových a cílových proudů je potřeba zabývat se poptávkou apriorní, tedy existuje-li visetelů dopravního systému cestovat bez ohledu na to, zdali dané dopravní spojení existuje či nikoli. Jedině tak je možné zjistit případné nedostatky, kde buď nabídka dopravy chybí a naopak, pro některé služby nejsou využívány v takové míře, jako bylo očekáváno. Obecně je možné tvrdit, že jedině poznáním apriorní poptávky je možná racionalizace modelovaného dopravního systému. Modelované období ovlivňuje hodnoty zdrojové (disponibilita) a cílové (attractivity) oblasti přepravních zón [22].

Zapojení všech obyvatel do dopravního průzkumu není z časových a finančních důvodů možné. Z tohoto důvodu je zapotřebí vytvořit vzorek respondentů zastupující všechny skupiny. Metody pro dopočet jsou [22]:

- metoda růstového faktoru
- vícenásobná lineární regresní analýza
- teorie volby při stanovení počtu zdrojových a cílových cest

Výstupem z těchto metod jsou počty cest vznikající (produkt dopravní poptávky) a končící (attractivity) v zónách, a to ve formě atributů zón disponibilita a attractivity (míra produkce a míra přitažlivosti) s rozlišením na jednotlivé skupiny obyvatel (například ekonomicky aktivní osoby s automobilem v růstové oblasti, žáci středních škol a studenti ze stagnující oblasti). Množství generovaných cest ze zóny vychází z hodnoty příslušného atributu zóny z hlediska účelu cesty, ve kterém je zohledněna i hybnost obyvatel.

Stejným principem je vypočet i počet cest, které v zónách končí, přičemž platí, že celkový počet vznikajících cest musí být shodný s celkovým počtem končících cest. Toto platí pro 24hodinové modely, ne pro hodinové modely. Hybnosti pro jednotlivé skupiny obyvatel a účely cesty jsou získány z průzkumu dopravního chování obyvatel.

Hybnost obyvatelstva je tedy počet cest připadající na jednoho obyvatele dané oblasti za časovou jednotku (nejčastěji pracovní den nebo rok).
4.4.2 Rozdělení cest

Principem rozdělení cest (*Trip Distribution*) je rozdělení produkce dopravní poptávky všech jednotlivých zón definovaných v modelovém území do ostatních zón. Hlavním parametrem pro toto rozdělení je tzv. atraktivita zón (tedy počet cest končících v dané zóně), která závisí např. na počtech pracovních míst a počtech zákazníků v obchodech a nákupních centrech. Dalším parametrem, který vstupuje do modelu distribuce cest, jsou generalizované náklady, které se někdy zjednodušují na cestovní čas nebo vzdálenost. Tento parametr ovlivňuje výpočet tak, že při srovnatelné atraktivitě území jsou pro danou aktivitu dopravně přitažlivější časově bližší zóny než zóny vzdálenější.

Pro stanovení výhledových přepravních vztahů se používá řada metod, které lze členit do dvou základních skupin – metody růstových faktorů a gravitační metody (metody přitažlivosti).

Metody růstových faktorů

Gravitační metody (metody přitažlivosti)

Obecně je možné tyto metody formuloval tak, že distribuce dopravní produkce zóny \(i\) do zóny \(j\) je přímo úměrná atraktivitě zóny \(i\) a nepřímo úměrná vzdálenosti mezi zónami \(i\) a \(j\). Mimo cestovní vzdálenost lze uvažovat i cestovní čas či náklady na přepravu. Odhad parametrů se provádí zvlášť pro jednotlivé skupiny obyvatel, podle účelu cest, počtu obyvatel, atraktivity zón atd.

Obecná rovnice gravitačního modelu [20]:

\[T_{ij} = A_i \cdot O_i \cdot B_j \cdot D_j \cdot f(U_{ij}) \]

kde: \(T_{ij}\) je počet cest mezi zónami \(i\) a \(j\), \(f(U_{ij})\) je funkce vyjadřující generalizované náklady cesty mezi zónami \(i\) a \(j\). Mimo cestovní vzdálenost lze uvažovat i cestovní čas či náklady na přepravu. Odhad parametrů se provádí zvlášť pro jednotlivé skupiny obyvatel, podle účelu cest, počtu obyvatel, atraktivity zón atd. Obecně rovnice gravitačního modelu [20]:

\[T_{ij} = A_i \cdot O_i \cdot B_j \cdot D_j \cdot f(U_{ij}) \]

Výsledkem použití jedné z výše popsaných metod je matice O-D (*Origin - Destination Matrix*), neboli zdroje a cíle cesty. Při vzniku modelu je brána v úvahu možnost použít O-D matici z předchozího období a pokud nedošlo k zásadní změně v přepravních vztazích, označujeme matici jako analogickou. Je-li nutné vytvořit novou matici O-D z důvodu zásadních změn přepravních vztahů (např. od vytvoření původní O-D matice uplynulo 3 a více let, během kterých došlo ke změně struktury obyvatelstva vlivem demografického vývoje, využití území i změně dopravních poměrů na dopravní síti), označujeme matici jako syntetickou.
Matice analogická

Tato matice je založena na modifikaci již existující O-D matice zjištěné v minulosti pro dřívější období. Modifikace se provádí pomocí koeeficientů vývoje. Tyto koeficienty vyjadřují vývoj přepravního výkonu od momentu v minulosti, pro které je O-D matice k dispozici, po současný stav vytvářený modelem. Základním předpokladem pro dosažení dostatečně kvalitních výsledků touto cestou je, že nedošlo k zásadním změnám v přepravních oblastech (otevření průmyslové zóny, obchodního centra, zprovoznění obchvatu) [22].

Tyto matice mohou být také odvozeny z empiricky zjištěných hodnot přepravních proudů a mohou sloužit jako základ pro tzv. hybridní dopravní modely.

Matice syntetická

Pro tvorbu je velmi často použit gravitační dopravní model. V případě ideálního dopravního modelu je intenzita přepravního proudu mezi dvěma zónami přímo závislá na produkci výchozí zóny, atraktivitě zóny cílové a na dopravním odporu. Dopravním odporom je myšlena dopravní náročnost vykonané cesty a její náklady. Jedná se například o časové překonání vzdálenosti, náklady na cestu a významnost trasy. Důležité pro správnou volbu určujícího faktoru odporu dopravního proudu je, aby odpovídal realitě.

Odpor trasy vychází obecně z principu odporu při překonávání vzdálenosti v geografickém prostoru, tzv. tření prostoru (Friction Of Space). V kontextu dopravních modelů se tento dopravní odpor projevuje odporom komunikací, křížovatku a napojení zón na síť pomocí tzv. konektorů (čas nebo vzdálenost napojení na síť, příchod k autu). Dopravní odpor je v praxi vyjádřen matematickou funkcí dopravní náročnosti překonání vzdálenosti mezi přepravními zónami. Dopravní náročnost je například časová dostupnost, náklady na cestu (parkovné, mýtné atd.). Pro co nejvyšší přesnost modelu mohou být zohledněny i neobvyklé proměnné, ale musí být relevantní pro volbu cesty i v reálné situaci [22].

Obr. 10 Výpočet času na síti pro IAD a VHD
4.4.3 Volba dopravního prostředku

Při volbě dopravního prostředku (Mode Choice) se odhaduje, kolik osob bude jezdit osobním vozidlem (IAD), veřejnou hromadnou dopravou (VHD), na kole, pěšky či jiným dopravním prostředkem. VHD se v modelu osobní dopravy někdy chová jako jeden dopravní mód, rozdělení do jednotlivých prostředků veřejné dopravy (autobus, vlak, tramvaj) probíhá až při zatěžování sítě. Jiná situace v modelech přepravy na dlouhé vzdálenosti, kde jsou (ve formě matic přepravních vztahů) běžně od sebe odděleny poptávkové matice, veřejná a nemotorová doprava – indikuje úspěšnost dopravních politik. V modelu dělby přepravní práce se nejčastěji postupuje tak, že každý dopravní mód má v modelu dělby přepravní práce svoji vlastní užitkovou funkci. Jednou z možných formulací užitkové funkce představuje například lineární kombinace veličin ovlivňujících volbu dopravního módů, obecně ve tvaru:

\[
P(m) = \frac{e^{U(m)}}{\sum_{m=1}^{k} e^{U(m)}},
\]

kde: \(P(m)\) je pravděpodobnost, že cestující zvolí dopravní prostředek \(m\), \(U(m)\) je lineární užitková funkce, která popisuje atraktivitu dopravního prostředku \(m.\sum_{m=1}^{k} e^{U(m)}\) je suma lineárních užitkových funkcí, které popisují atraktivitu alternativních dopravních prostředků [24].

V modelu dělby přepravní práce se nejčastěji postupuje tak, že každý dopravní mód má v modelu dělby přepravní práce svoji vlastní užitkovou funkci. Jednou z možných formulací užitkové funkce představuje například lineární kombinace veličin ovlivňujících volbu dopravního módů, obecně ve tvaru [24]:

\[
U(m) = a_m + b_m \cdot IVTT_m + c_m \cdot OVTT_m + d_m \cdot COST_m,
\]

kde: \(U(m)\) je lineární užitková funkce, která popisuje generalizované náklady dopravního prostředku \(m, IVTT_m\) je čas strávený ve vozidle pro dopravní prostředek \(m, OVTT_m\) zahrnuje soubor cestovních časů mimo dopravní prostředek, příchodu k první zastávce \((Access Time)\), čas z poslední zastávky do cíle cesty \((Egress Time)\) a čas přestupů \((Transfer Time)\), \(COST_m\) je cena jízdy v dopravním prostředku \(m\) (cena jízdného, měsíční, apod.) a \(a_m, b_m, c_m, d_m\) jsou specifické koeficienty.

Čím vyšší užitková funkce je, tím více klesá pravděpodobnost přiřazení na dopravní sít. Odhad parametrů pro výpočetní model je prováděn pro každou skupinu obyvatel. Veličiny představují cenové a časové matice.

Cenová matice pro dopravní mód VHD je vytvářena na základě mezizonálních jízdních dob s ohledem na tarifní ceny hromadné dopravy. Nákladová matice pro dopravní mód osobních vozidel je vytvořena z distanční matice při započtení provozních nákladů na 1 km. V časových maticích pro individuální dopravu je kromě jízdní doby započítán i manipulační čas, který zohledňuje například parkování osobního vozu či úklid jízdního kola.
Výsledkem třetího kroku jsou již vypočítané matice dopravních vztahů pro jednotlivě uvažované dopravní mody [25].

4.4.4 Zatížení sítě

Matice získané z předchozích kroků čtyřstupňového modelu jsou maticemi dopravní poptávky pro jednotlivé dopravní mody uvažované v dopravním modelu a slouží jako vstupní matice do výpočtu dopravního zatížení (Traffic Assignment).

Metod pro přidělení přepravních vztahů na síť je velké množství. Dělení vychází ze samostatné podstaty odlišnosti přístupu k zatěžování dopravní sítě. Níže jsou uvedeny základní metody.

Zatížení silniční dopravy

Přírůstkové zatížení sítě (Incremental Assignment) modeluje, jak se síť postupně zaplňuje. Poptávková matice je proporcionálně rozdělena na několik dílčích matic (iterační kroky). Na počátku mohou řidiči využít prázdnou síť, pro kterou existuje přesně jedna nejkraţší trasa pro každou dvojici zdroj - cíl. Síť se postupně zaplňuje a zvyšuje se impedance na přetížených trasách, proto v každém dalším kroku mohou být nalezeny nové alternativní kratší trasy. Počet a velikost dílčích matic rozhoduje o kvalitě výsledků. Výpočet končí po vykonání daného počtu iteračních kroků bez kontroly shody mezi výslednou intenzitou dopravy a impedancí na linkách [26].

Rovnovážné zatížení sítě (Equilibrium Assignment) je metoda, která distribuuje poptávku podle Wardropovy první zásady: „Každý účastník silničního provozu volí svou trasu tak, že cestovní doba na všech alternativních trasách je stejná a přechodem na jinou trasu by se zvýšila osobní cestovní doba.” Metoda určuje uživatelské optimum, které se liší od systémového optima. Vzhledem k tomu, že procedura zatížení končí tehdy, kdy jsou všechny trasy na všech dvojicích zdroj - cíl v rovnovážném stavu, poskytuje realističtější výsledky než inkrementální zatížení. Doba výpočtu je závislá na poměru intenzita/kapacita v sítě [20].

Stochastická metoda uvažuje skutečnost, že parametry jednotlivých tras, které jsou relevantní pro volbu trasy, jsou vnímány účastníky silničního provozu subjeektivně, někdy i na základě neúplných
informací. Volba tras vy závisí na individuálních preferencích konkrétních uživatelů, které nejsou v modelu vyjadřeny. Pro stochastické přírazení se nejprve určí alternativní množství tras, a poptávka je rozložena na tyto trasy na základě distribučního modelu (např. logitového). V porovnání s metodou Equilibrium je zde naplněno více tras i na slabě zatížených sítích, protože malá část poptávky je přiřazena i na méně optimální trasy. Takové rozdělení je bližší realitě než striktní aplikace Wardropova prvního principu.

Zatížení TRIBUT je metoda vhodná zejména pro modelování mýtného systému. V porovnání s konvenčními metodami, které jsou založené na konstantní hodnotě času, TRIBUT používá souběžně distribuované hodnoty času. Podle toho TRIBUT počítá při vyhledávání a volbě tras se dvěma kritérii, a to s časem a náklady.

Dynamic User Equilibrium je metoda obsahující algoritmus, který je vysoce účinný jak z hlediska využití paměti, tak z hlediska výpočetní doby. Tento model může být proto aplikován na velké síti s dlouhou analyzovanou dobou (např. celý den). Metoda je zvláště vhodná pro simulaci (27):

- silně přetížených městských sítí, kde jsou podmínky přesycení přítomné na velké části sítě po několik hodin každý den
- sítí s přechodným efektem přetížení, co vede k variacím volby tras v průběhu doby zatížení
- sítí s přítomností dynamického řízení nebo přestupností měnících se v čase (např. mění se mýtné podle denní doby, časované signální plány, povolení užití jízdních pruhů)
- nehodového managementu
- evakuacích plánů

Dynamické stochastické zatížení sítě je metoda, která poskytuje výsledky (např. intenzity) na trase a jejích jednotlivých objektech (linky, křižovatky, konektory) pro každý časový interval zadaný uživatelem modelu. Dynamické zatížení poskytuje možnost analýzy přechodných stavů přetížení v sít. Metoda je ideální pro výpočet distribučních křivek intenzity na jednotlivých objektech v síti.

Zatížení veřejná hromadné dopravy

Pro výpočet zatížení sítě veřejné dopravy se používají modely více zájmových území, které zajišťují zatížení matic dopravní poptávky na síť hromadné dopravy při respektování linkového vedení, jízdních dob, jízdních řádů, přestupních vazeb a dostupnosti zástavek VHD.

Pro přiřazení cestujících na síť jsou využívány 3 způsoby, od nej jednoduššího k nejsložitějšímu, jedná se o následující procedury.

Procedura založená na intervalech (Headway-based Procedure) je ideální pro městské sítě s krátkými intervalem a pro dlouhodobé plánování, nebo v případě, že jízdní řády pro analyzovaný časový úsek ještě nejsou známy. Výpočet bez jízdních řádů na úrovni jednotlivých cest zaručuje Krátkou výpočetní dobu i pro větší síť. Při tomto postupu je každá linka charakterizována trasou, jízdní dobou mezi zastávkami a intervalem. Čekací doby na přestup jsou uvažovány globálně, odjezdy různých linek jsou na sobě nezávislé. Ve srovnání s postupem založeným na jízdních řádech tato metoda vykazuje značné zkrácení výpočetní doby pro většinu síť hromadné dopravy, zvláště pro síť s pravidelnými intervaly. V síťích, kde mohou linky jen jednou trasou, jsou však (výpočetní) časové úspory nízké. Tato metoda není vhodná pro plánování hromadné dopravy ve venkovských oblastech a pro dopravu na větší vzdálenosti, protože se zde vyskytují velké časové intervale.

Procedura založená na jízdních řádech (Timetable-based Procedure) by měla být použita, pokud jsou intervaly v systému dlouhé a koordinace jízdních řádů je důležitá pro přestupy. Uvažuje přesné jízdní řády, a proto je zvláště vhodná pro modelování venkovských oblastí nebo železničních sítí. Metoda může být použita tehdy, pokud jsou k dispozici plán sítě hromadné dopravy a detailní jízdní řády. Uvažuje s koordinací jízdních řádů, a proto vykazuje velmi přesné výsledné výstupy výpočtů.

\[
PJT = (\text{čistá doba strávená ve vozidlech VHD} \\
\cdot \text{penalizace za použití dopravního prostředku}) \\
+(K \cdot \text{čas dostupnosti první zastávky}) \\
+(L \cdot \text{čas dostupnosti poslední zastávky}) \\
+(M \cdot \text{součet časů všech pěších cest}) \\
+(N \cdot \text{doba čekání na první spoj}) \\
+(O \cdot \text{doba čekání na přestupech}) \\
+(3 \cdot \text{počet přestupů})
\]

Všechny časy jsou zadány v minutách. Penalizace za použití dopravního prostředku je obecně nastavena na hodnotu 1, pro tramvajové linky 0,75. Koeficienty K, L, M, N, O jsou voleny empiricky. Příklad možné defailní funkce pro výpočet doby čekání na první spoj:

\[
N = 2,2 \cdot (\text{interval})^{0,64}
\]

Přičemž maximální doba čekání je uvažována ve výši 100 minut.

Shrnutí použití výběru metod přiřazení na síť

Výběr dané metody může zásadním způsobem ovlivnit výsledek přiřazování na síť a v konečném důsledku i velikost a strukturu výsledných dopravních intenzit na dopravní síti. Tvůrce modelu by měl zdůvodnit použitou metodu a v případě nejistoty lze použít porovnání více metod mezi sebou.
Využití metod závisí také na charakteru vstupních dat, ta se výrazně liší např. pro ekvilibristickou nebo stochastickou metodu.

Obecně lze však říct, že pro dopravní modely, které posuzují strategické dopravní koncepce (např. plány udržitelné městské mobility, krajské dopravní politiky apod.) se nejvíce využívá metoda ekvilibristická, která vhodně reprezentuje chování účastníků se znalostí prostředí.

Výběr metody při přiřazení hromadné dopravy rovněž závisí na měří detailu vstupních dat a potřebné podrobnosti dopravního modelu. Např. pro úlohu optimalizace systému veřejné hromadné dopravy použijeme nejpředobnější metodu přiřazení založenou na jízdních řádech. Metoda klade nároky na existenci dat o polohách zastávek, jízdních dobách nebo nejlépe jízdních řádech a údajích o přestupních vazbách v terminálech VHD. Naproti tomu pro úlohy strategického rozhodnutí, kdy není známa přesná trasa natož jízdní řády, lze použít proceduru založenou na intervalech nebo dopravním systému.

4.4.5 Specifika nákladní dopravy

Je doporučováno, aby poptávková matice byla převzata z přepravních průzkumů komodit, pokud jsou taková data k dispozici v dostatečně kvalitě. Pokud taková data nejsou k dispozici, je nutné zpracovat čtyřstupňový či vícestupňový model, dle postupu obdobného jako v osobní dopravě. Plně čtyřstupňový model však může vykazovat podstatně vyšší odchylky než u modelů osobní dopravy, vzhledem k obtížnějšímu zobecnění tvorby cest a distribuce cest.

Vznik cest

Modely nákladní dopravy sledují specifické chování komoditních skupin. Podle účelu a podrobnosti modelu se mohou lišit i nároky na podrobnost sledovaných komoditních skupin.

Hlavními atributy pro rozdělování komoditních skupin jsou přidaná hodnota přepravovaného zboží (tedy např. členění na základní suroviny, výrobky), dále pak logistický typ přepravy (např. kontejnery, hromadné substráty, chladící vozy apod.). Určení komoditních skupin je možné např. dle mezinárodně sledovaných komoditních skupin (NST 2007 [28]). Čím podrobnější je členění sledovaných komoditních skupin, tím přesnější výsledky modelu je možné očekávat, tím však také rostou nároky na další vstupní data a obtížnost jejich získání. Velmi často může být poskytnutí dat odmítnuto s ohledem na obchodní tajemství.

Na rozdíl od osobní dopravy, kde je stále mnoho cest s jednou destinací (např. bydliště – pracoviště), v nákladní dopravě je většina cest vícedestinačních – nákladní vozidlo většinou rozvezze zboží do více lokalit. Z tohoto důvodu je vhodné využívat tour-based přístup, tedy přístup řetězců

Využití tour-based přístupu (kap. 3.2.4) je vhodné zvláště v příměstských a městských oblastech, kdy pokud známe zdroj a cíl (a často zdroj = cíl) cesty, potřebujeme znát jednotlivé zastávky vozidla, aby bylo možné jeho pohyb namodelovat. Při jízdě nákladního vozidla po městě lze očekávat těchto zastávek celou řadu. Pro takový model jsou však potřeba detailní poklady, kdy je třeba sledovat a sbírat údaje o pohybech stovek či tisíců vozidel, ideálně rozdělených na komoditní skupiny, a jejich trasy zaznamenat. Tato data následně slouží pro kalibraci modelu. V současné době podklady podobného rozsahu nejsou veřejně dostupné a při tvorbě modelu tak není možnost vyjít z alespoň nějakých dat.

Tour-based přístup naopak není třeba využívat u modelů malých měst či tahových studi v extravilánu, kdy je v modelovaném území většina nákladní dopravy dálková (tranzitní), tedy směřující přes zájmovou oblast dopravního modelu.

Obr. 11 Znázornění tour-based přístupu v nákladní dopravě (cesta: sklad - obchod - obchod - obchod - sklad)

Rozdělení cest

Na základě popisu produktivity a atraktivity provedené v předchozím kroku je pro sledované komoditní skupiny vypočtena distribuce cest na základě gravitačního modelu (kap. 4.4.2). Jako distribuční funkce může být použita např. vzdálenost mezi zónami, optimální řešení jsou však generalizované náklady na přepravu dané komoditní skupiny. Tvar této distribuční funkce musí být
odvozen na základě průzkumů provedených nejlépe přímo v řešeném území či statistických dat pro území obdobně.

Volba dopravního módu

U všech multimodálních modelů nákladní dopravy je třeba provést výpočet výběru volby módu. Bez ohledu na to, zda jsou předchozí kroky „vznik cest“ a „rozdělení cest“ vypočteny, nebo jsou převzaty z přepravních průzkumů. Vstupem jsou poptávkové matice pro komoditní skupiny bez rozlišení měsíce, výstupem jsou agregované poptávkové matice pro sledované měsíce.

Výpočet je vhodný provést na základě logitového modelu (kap. 4.4.3). Klíčové je určit všechny atributy pro stanovení generalizovaných nákladů hodnocených měsíce.

Přiřazení na síť

Přiřazení na síť je standardně vypočteno s využitím algoritmu Equilibrium (viz kap. 4.4.4) se zohledněním kapacity dopravní sítě. Celý proces přiřazení na síť je vhodně zpracován v několika iteracích, jelikož se kroky výpočtu navzájem ovlivňují.

4.5. **Kalibrace dopravního modelu**

Dopravní model je založen na řadě obecných předpokladů, matematických funkcích a dostupných vstupních datech. Po dokončení tvorby modelu bude výsledkem vždy model, který je skutečností pouze blízký, jelikož zájmové území modelu je téměř vždy unikátní a dopravní poměry jsou proměnlivé v čase. Z tohoto důvodu je třeba provést kalibraci modelu, která se skládá nejdříve z ověření postupu (verifikace) a poté ze samotné kalibrace modelu současného stavu [30].

4.5.1 **Ověřování (verifikace)**

V prvním kroku je nutné zkontrolovat, zda použitý model či nástroj vytvářející model je v souladu se zadáním studie a zda obsahuje všechny potřebné funkce pro splnění úkolů, pro které je vytvořen. Ověření nemá vztah k reálným datům jako je např. počet přepravených osob nebo počet vozidel na síti. K tomu slouží kroky kalibrace a validace, které je nutné u každého dopravního modelu provést.

Ověření dopravního modelu by se mělo odehrávat v následujících krocích:

- ověření metodického postupu – ověření vhodnosti vstupních dat, použitého typu dopravního modelu (počet stupňů modelu, modelované dopravní měsíce), použitých výpočetních procedur pro různé dopravní měsíce
- ověření dílčích částí – např. dílčích matic (matice vzdáleností, matice časové dostupnosti), využití výsledků z dopravního modelu a použité procedury pro analýzu dopravního modelu
- kontroly funkčnosti – týká se jak ověření funkčnosti dopravní sítě (kapacita, rychlost) a dopravních systémů pohybujících se po ní včetně nastavených parametrů, tak i napojení dopravních zón a zonace území (rozdělení na dopravní zóny vzhledem k počtu obyvatel, uspořádání území apod.)

Součástí ověření funkčnosti dopravního modelu by mělo být rovněž otestování citlivosti celého modelu na změnu vstupních parametrů. Tyto testy citlivosti se liší v závislosti na typu dopravního modelu. Zejména u čtyřstupňových multimodálních modelů mohou být tyto testy náročnými, ale na
druhou stranu jediným nástrojem, který prověří chování dopravního modelu. U jednodušších modelů se může jednat o testování citlivosti na změnu v usporádání dopravní sítě nebo nabízené služby (např. počet spojů VHD), u čtyřstupňových se může jednat např. o test citlivosti modelu na změnu počtu obyvatel nebo populačních skupin.

4.5.2 Kalibrace

Kalibrace je nezbytný proces „ladění“, kdy jsou upravovány jednotlivé parametry modelu (například jízdní doby) tak, aby se chování modelu co nejvíce přiblížilo pozorovanému reálnému stavu na dopravní síti. Dopravní modely jsou založené na velkém množství parametrů a dalších nastavení, proto je při kalibraci nutné vzít v úvahu následující kroky:

- přijmout ty výchozi parametry, kterým lze důvěřovat
- omezit kalibraci na zpracovatelné množství parametrů
- globální parametry, které ovlivňují celý model, jsou kalibrovány jako první
- ostatní parametry, které ovlivňují např. jeden úsek, jsou kalibrovány až později

Modely jsou vytvářeny pro definované účely, jejich struktura a stupeň detailnosti jsou těmto účelům přizpůsobeny. Není vždy možné pokrýt všechny sledované ukazatele jedním modelem, protože stupeň detailnosti ovlivňuje sledované veličiny. Zdrojem nejistoty pozorovaných jevů mohou být:

- chyby v měření
- nepřesné informace
- nevhodné použití dat
- statistická odchylka
- nepřesnost výpočtů
- nepřesná definice modelu, například zanedbání důležitého prvku systému
- nejistoty způsobené výpočetním algoritmem
- chyby ve slučování a převádění dat

Právě z důvodu vzniku nejistot, ze kterých plynou chyby v modelu, je nutné provádět kalibraci a následně validaci modelu [22].

Příklad kalibrace: Jestliže očekáváme určité statistické rozdělení cestujících mezi jednotlivými stanicemi na modelované síti, tak během kalibrace modelu na základě empirických dat nastavíme parametry tohoto rozdělení tak, aby generoval obdobný počet cestujících mezi zvolenými zastávkami. Správně kalibrovaný model pak v dílčích náhledech vykazuje dobrou shodu s realitou [31].

U kalibrace porovnáváme stejné hodnoty mezi sebou v modelu a v reálném stavu (např. výsledky intenzit z modelu a intenzity z dopravního průzkumu). Níže jsou popsány možné kroky při kalibraci dopravního modelu:

- kalibrace atraktivity území – porovnání např. s cíli cest z průzkumu dopravního chování
- kalibrace distribučních funkcí jednotlivých účelů cest a skupin obyvatel – porovnání s daty z dopravního chování
- kalibrace agregovaných přepravních proudů – porovnání s daty z dopravního chování
- kalibrace funkcí volby dopravního prostředku – porovnání s daty z dopravního chování (je potřeba uvažovat, kdy byla data z průzkumu dopravního chování pořízena a zda nebyl některý dopravní mód podhodnocen), porovnání lze provádět na několika úrovních (za každou skupinu obyvatel, za větší geografické celky, za celý model)
- kalibrace parametrů odporových funkcí – zejména výše exponentu funkce používané při zatěžování má vliv na „náhlost“ zpomalení dopravního proudu při přiblížení se kapacitě dané komunikace
- kalibrace dopravního výkonu – jako poslední krok kalibrace se provádí kontrola takových parametrů, jako intenzity na jednotlivých úsecích nebo správný počet vystupujících cestujících na zastávce

Je užitečné si zadat určité cíle, jejichž dosažení určí, zda proběhla kalibrace správně. Tím je například maximální procentuální rozdíl modelovaných a naměřených intenzit.

4.5.3 Posouzení míry shody modelu a reality pomocí statistických nástrojů

Jako používané statistické posouzení lze uvést statistiku GEH. Ta je obvykle využívána při testu dobré shody a v principu ověřuje, zdali má náhoná veličina nějaké určité předem dané rozdělení. Statistika zahrnuje jak relativní, tak absolutní chybu a je tedy vhodná pro vyjádření shody modelu a reality. Vztah určující výsledky statistiky GEH dle DMRB je [32]:

\[
GEH = \frac{(M - C)^2}{(M + C)/2}
\]

kde \(M\) je intenzita spočítaná v modelu a \(C\) je intenzita empiricky získaná v terénu.

Existuje více statistických metod, jako je například střední absolutní chyba, střední absolutní procentuální chyba nebo střední kvadratická odchylka. Každá z těchto metod má své vhodné i méně vhodné užití. Statistika GEH je však nejčastěji používaná.

Níže v tabulce jsou uvedeny příklady kalibračních kritérií, které lze využít pro posouzení dopravního modelu. Tyto kritéria lze využít i pro validaci modelu.
Kalibrační a validační kritéria (převzato a upraveno dle [26], [33])

<table>
<thead>
<tr>
<th>SKUPINA KRITÉRIÍ</th>
<th>KRITÉRIUM</th>
<th>HODNOTA KRITÉRIA<sup>6</sup></th>
<th>KOMENTÁŘ</th>
</tr>
</thead>
</table>
| Matice časové vzdálenosti (cestovní čas ze zóny A do B) | Rozdíl času cesty v modelu ve srovnání s časem cesty v průzkumu dopravního chování nebo s časem dle jízdního řádu či plánovače cesty | < 15 % | Porovnání s průzkumem je obtížně vzhledem k tomu, že respondenti obvykle hodnotu v odpovědi zaokrouhluji na 5 minutové hodnoty (u delších cest i více)
Pokud je čas generován na základě plánovače, mohou vznikat chybné časy související s neúplnou adresou (např. Brno-střed)
Vyžaduje reprezentativní vzorek dat |
| | Vznik cest | | | |
| | Hybnost obyvatelstva (počet cest vykonaných za den) ve srovnání s daty z průzkumu dopravního chování | Celkem | < 1 % (< 0,1%) | Vyžaduje reprezentativní vzorek dat |
| | Za skupinu obyvatel | | |
| | Procentuální podíl počtu cest za jednotlivými aktivitami ve srovnání s daty z průzkumu dopravního chování | Za aktivitu (mimo cesty domů) | < 3 % (< 1%) | U cest domů může být rozdíl vyšší |
| | Rozdělení cest | Na úrovni hlavních zón (např. městské části) | < 5 % | Záleží na velikosti hlavních zón a velikosti vzorku dat z průzkumu dopravního chování |
| | Počet pracovních cest za obec O-D páry v modelu ve srovnání s daty ze statistického úřadu | Korelace | > 60 % (> 95%) | Záleží na kvalitě statistických dat |

⁶ V závorce jsou uvedeny hodnoty dle [26], [33]. V současné době je z důvodu nedostatku kvalitních vstupních dat těchto hodnot nemožné dosáhnout, proto byly hodnoty upraveny. Autoři předpokládají, že tato metodika je prvním krokom k dosažení zahraničních hodnot kalibračních kritérií.
<table>
<thead>
<tr>
<th>Volba dopravního prostředku</th>
<th>Podíl počtu cest jednotlivými dopravními módy</th>
<th>Celkem za všechny skupiny obyvatel a aktivity</th>
<th>< 5 %</th>
<th>< (0,3 %)</th>
<th>Je vhodné kromě podílu cest kontrolovat volbu dopravního módu i s ohledem na dopravní výkon (ovlivněno kvalitou 2. roku)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Podíl cest za jednotlivými aktivitami ve srovnání s daty z průzkumu dopravního chování</td>
<td>Celkem v závislosti na distribuční křivce délky cest</td>
<td>Vizuální kontrola shody distribuční křivky, kontrola jednotlivých intervalů</td>
<td>Kontrola shody průměrné délky cest jednotlivých dopravních systémů s daty průzkumu</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Volba dopravního prostředku v závislosti na distribuční křivce délky cest</td>
<td>Volba dopravního prostředku v závislosti na délce cesty ve srovnání s daty z průzkumu dopravního chování</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zatížení dopravní síti silniční dopravy</td>
<td>Celodenní intenzity</td>
<td>GEH < 5</td>
<td>> 85 %</td>
<td>Platí jak pro 24hodinové intenzity, tak pro modely dopravní špičky. Příčemž 24hodinové intenzity musí být před výpočtem převedeny na ekvivalenty hodin.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Korelace</td>
<td>> 90 % (> 99%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zatížení dopravní síti veřejné hromadné dopravy</td>
<td>Počty osob ve veřejné dopravě za den na profilech</td>
<td>GEH < 5</td>
<td>> 85%</td>
<td>Záleží na kvalitě dat</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Korelace</td>
<td>> 85% (> 95%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zatížení síti cyklistickou dopravou</td>
<td>Celodenní intenzity ve srovnání s daty ze sčítání cyklistické dopravy</td>
<td>GEH < 5</td>
<td>> 85 %</td>
<td>Záleží na kvalitě dat</td>
<td></td>
</tr>
</tbody>
</table>
4.6. VALIDACE DOPRAVNÍHO MODELU

Po dokončení kalibrace modelu následuje krok validace. Jedná se o finální test správnosti modelu, do jaké míry je model schopen simulovat skutečné poměry dopravní poptávky (přepravní vztahy, dělbu přepravní práce, dopravní intenzity na dopravní síti). Základním předpokladem správné validace je oddělení dat použitých pro kalibraci a pro validaci. Data pro kalibraci i validaci jsou svým charakterem velmi podobná, jelikož se jedná o ukazatele, které měří výkonost, strukturu a prostorovou distribuci dopravní poptávky (přepravní vztahy, intenzity dopravy, děla přepravní práce apod.). Pro kalibraci by však měla být použita jiná data, než pro následnou validaci modelu, a to fyzicky (jiná sada dat) ale i typově. Nástroje mohou být použity obdobné, či stejně.

Příklad: Pokud pro kalibraci použijeme údaje o intenzitách vozidel nebo počtu cestujících ve VHD, pro validaci bychom měli využít data o počtu vyjíždějících osob z daných zón. Tím zajistíme, že data budou už ze své podstaty fyzicky rozdílná, navíc ale zvýšíme kontrolu nad fungováním modelu. Velmi snadno totiž může dojít k situaci, kdy pečlivou úpravou konkrétních parametrů modelu za účelem jeho kalibrace můžeme nevědomky deformovat model v jiných parametrech a zcela jej odchýlit od reality. Tyto odchyly kvůli mnohem snáze odhalíme, validujeme-li na typově jiných datech. Pokud je to možné, měl by být proces validace oddělen i z personálního hlediska, tedy validace by měla být prováděna jiným pracovníkem než tím, který prováděl kalibraci.

Komplexnost dopravního modelu se všemi svými stochastickými (nahodilými) prvky v rámci procesu zatěžování, vstupními parametry a matematickými funkcemi je natolik rozměrná, že i po procesu validace není možné od výsledků modelu očekávat naprostou shodu s realitou v současném, na tož v budoucím stavu nebo hypotetickém scénáři. Z tohoto důvodu jsou nastavena výše uvedená kritéria kalibrace a validace modelu (tab. 06), prostřednictvím kterých lze hodnotit kvalitu dopravního modelu jako takového.
4.7. PREDIKCE

Dokončením kalibrace a validace je dopravní model vytvořen pro současný (základní) stav. Fáze predikce dopravního modelu spočívá v úpravě vstupních dat a parametrů modelu, čímž jsou vytvářeny hypotetické scénáře stavu dopravní poptávky.

Predikce ukazatelů a indikátorů souvisejících s dopravou slouží obecně k identifikaci budoucích problémů v referenčním stavu nebo k provedení ex ante hodnocení vybraného dopravního projektu nebo celého souboru opatření tvořících dopravní politiku. Na rozdíl od ex post hodnocení (monitoring a vyhodnocení současného stavu), pro které je možné použít empirická data, tj. průzkumy, mapování či kontinuální automatizované sběry dat (viz kap. 4.3), při ex ante hodnocení je možné údaje pouze odhadnout právě prostřednictvím modelování. Predikční schopnost dopravního modelu je proto hlavní cíl tvorby dopravního modelu.

Jednotlivé predikce dopravního modelu jsou zasazeny do specifických situací, které se v praxi označují jako scénáře. Scénáře lze dělit na tyto tři typy (podrobněji kap. 4.7.1) [34]:

- současný (základní) stav (*Base Year, Baseline*)
- referenční stav (*Reference Case*)
- alternativní stav (*Alternative Scenario*)

Využití jednotlivých datových vstupů (viz kap. 4.3) v dopravním modelu není stejné. Ve scénáři současného (základního) stavu nejsou pochopitelně využívána data pro konstrukci predikce. Ve scénářích referenčního a alternativního stavu naopak nejsou využívána data pro kalibraci a validaci modelu, jelikož tato data jsou referenční k současnému stavu.

Dále lze v praxi rozlišit tři časové horizonty predikce, ve kterých je dopravní model predikční:

- krátkodobý horizont (do 4 let)
- střednědobý horizont (5 až 14 let)
- dlouhodobý horizont (více než 15 let)

Časové vymezení výše uvedených horizontů je pochopitelně orientační a vychází z praxe. U některých typů analýz se za dlouhodobý horizont považuje 10 let (např. provozní koncepty VHD) nebo i 30 let (např. ekonomické hodnocení metodou CBA). Často se výhledové horizonty dopravního modelu vážou na referenční roky, ke kterým jsou definovány cíle dopravních politik, cílové stavy územních plánů, konce hodnotících období staveb či vychází ze lhůt daných zákonem nebo dokumentů nelegislativní povahy[7]. U opatření a záměrů plánovaných ve střednědobém a dlouhodobém horizontu je nutné uvažovat s vývojem vstupních dat a parametrů modelu v čase. To v praxi může znamenat nutnost modelování těchto vstupních dat v čase (např. demografická prognóza, prognóza rozvoje území, prognóza makroekonomických ukazatelů apod.).

Naopak u opatření realizovatelných v krátkodobém horizontu dopravní model nemusí predikovat stav v konkrétním roce, ale pouze ověřuje realizovatelnost projektu či opatření a zjišťují se dopady

7 Z hlediska strategického plánování se v současné době, tj. v roce 2017 jedná například o roky 2023 (konec programového období), 2030 nebo 2050 (oba výhledové roky jsou vázané na dopravní politiku EU a cíle sítě TEN-T; Reg. 1315/2013) [37].
tohoto záměru. Změna vstupních parametrů vlivem vývoje v čase v takovém případě nemá často význam a vstupní data a parametry jsou upraveny pouze s ohledem na charakter záměru.

Je třeba zdůraznit, že v kap. 4.7 je věnována pozornost pouze dopravnímu modelu vytvářeném tradičním přístupem, tedy bez implementace zpětovazební smyčky mezi dopravní model a socio-ekonomické prostředí (podrobněji viz kap. 3.2.3).

4.7.1 Současný (základní) stav

Současný stav dopravního modelu je základní verzi dopravního modelu. Je jím myšlen kalibrovaný a validovaný model současného stavu, který slouží jako podklad pro výhledové scénáře (referenční, alternativní). Vstupní data do tohoto modelu vstupují v současném stavu, zvláště se jedná o údaje o obyvatelstvu a jeho dopravním chování (již zmíněné v průzkumu odhalených preferencí dopravní poptávky), o využití území, o dopravní sítě, sčítání dopravy a směrových průzkumech a o nákladní dopravě.

4.7.2 Scénář referenčního stavu

Referenční stav je výhledovým scénářem dopravního modelu, v rámci kterého je předpokládán nejpravděpodobnější očekávaný vývoj definovaný na základě dosavadních dopravních strategií, plánů a politik. Strategie, které jsou předmětem hodnocení modelu, by neměly být ve scénáři referenčního stavu obsaženy. Referenční stav se užívá zvláště ve střednědobém a dlouhodobém horizontu predikce dopravního modelu. V krátkodobém horizontu může být scénář referenčního stavu nahrazen současným stavem v případě, že se od sebe oba scénáře neodlišují.

Vstupními daty referenčního stavu jsou především data pro konstrukci predikce. V praxi se jedná o modifikované údaje o obyvatelstvu (prognoza vývoje obyvatelstva) a jeho dopravním chování (prognoza stupně automaticizace, prognoza hybnosti), o využití území (prognoza rozvoje území), o dopravní síti (předpokládaný vývoj realizace plánovaných staveb) a o nákladní dopravě (prognoza růstu dopravní poptávky v nákladní dopravě a předpokládaný vývoj realizace dopravní infrastruktury). Dále jsou součástí údaje makroekonomického charakteru (HDP, vývoj nezaměstnanosti), ekonomicko-politického charakteru (sazby daně existujících i neexistujících, dotační opatření, poplatky, politická rozhodnutí apod.) a dopravně-ekonomického charakteru (dopravní poptávka či intenzity tranzitní dopravy, poplatek za užití dopravní cesty nebo infrastruktury obecně, sazby speciálních daní apod.).

Vstupní data podmiňují výsledek dopravního modelu, jinými slovy pokud tyto podmínky nejsou nebo nebudou naplněny, výsledky dopravního modelu se budou lišit od skutečnosti (budoucích). V praxi se téměř nikdy nepodaří naplnit zcela všechny podmínky, za kterých jsou výsledky modelu platné. Platí pravidlo, že čím více podmínek je stanoveno, tím se sice zvyšuje přesnost modelu (např. z hlediska velikost dopravních intenzit či struktury přepravních vztahů), ale zároveň roste i pravděpodobnost, že model celkově nebude platný (např. zcela opačný trend vývoje některých ukazatelů). Čím méně bude mít model podmínek, tím nižší bude přesnost modelu, ale zároveň se zvyšuje platnost výsledků modelu. V druhém případě lze označit takový model za robustní či rezistentní vůči neplatnosti. Není proto dobré implementovat do modelu co nejvíce předpokladů s cílem maximálně zpřesnit výsledky modelu. Úkolem tvůrce modelu je na základě vlastních zkušeností stanovit množství podmínek
dopravního modelu vyváženě tak, aby model byl rezistentní vůči celkové neplatnosti modelu, ale zároveň přesný natolik, aby poskytl výsledky v potřebné přesnosti. Výsledný návrh scénáře je vždy kompromisem obou vlivů.

Referenčních stavů (scénářů) může být více, pokud uživatel modelu požaduje identifikaci vlivů jednotlivých faktorů dopravního modelu (např. vliv vývoje obyvatelstva, vliv rozvoje území apod.). Zároveň může být predikováno více scénářů prognózy obyvatelstva či rozvoje území. S každým novým scénářem však rostou finanční a časové náklady na tvorbu modelu.

Podoba referenčního stavu či stavů (scénáře/scénářů) se diskutuje v okamžiku, kdy se rozhoduje o alokaci finančních prostředků na predikční fázi tvorby dopravního modelu. V praxi je tedy ještě zahájením zadávacího řízení veřejné zakázky, tedy před tvorbou dopravního modelu, anebo v průběhu tvorby modelu, pokud to smluvní podmínky umožňují. Diskuze probíhá mezi zadavatelem, uživatelem i tvůrcem modelu, přičemž uživatel musí specifikovat požadavky na referenční stav a tvůrce na tyto požadavky reaguje návrhem modelu. Zadavatel následně rozhoduje o celkovém rozsahu daného scénáře, jelikož rozsah a existence scénáře výrazně ovlivňují cenu celého dopravního modelu.

Obr. 12 Příklad současného stavu, scénáře referenčního stavu a dvou scénářů alternativního stavu (podpora udržitelné dopravy, podpora motorové dopravy)
4.7.3 Scénař alternativního stavu

Výhledový alternativní stav reprezentuje situaci, ve které je předpokládána implementace jednoho nebo více opatření či zámerů v dopravě bez ohledu na časový horizont. Zpravidla se jedná o záměry či opatření, jejichž realizace se zvažuje a cílem dopravního modelu je prověřit přínos či dopad tohoto záměru z hlediska změny dopravní poptávky a dopadů na dopravní infrastrukturu. Scénař alternativního stavu se zaměřuje především na opatření a záměry dopravního charakteru.

Jak už bylo řečeno, scénář alternativního stavu může být zpracován pro jakýkoliv časový horizont, přičemž v případě krátkodobého horizontu je referenčním stavem současný stav a v případě střednědobého a dlouhodobého horizontu se alternativní stav porovnává se scénáři referenčních stavů pro daná časová období.

Zároveň alternativní stav přebírá z referenčních scénářů vývoj těch ukazatelů a zámerů, které nejsou předmětem hodnocení dopadů. Příklad: Pokud v referenčním scénáři je navržena realizace dopravní stavby a v alternativním scénáři je snaha posoudit vliv ekonomického opatření cílící na parkování, tak alternativní scénář převezme předpoklad realizace dopravní stavby a předmětem srovnávání mezi oběma scénáři je pouze vliv ekonomického opatření.

4.7.4 Typy nejčastěji hodnocených změn v dopravních modelech

Změna v dopravní nabídce

Navrhovaný soubor záměrů na síti pozemních komunikací definuje uživatel modelu (např. specialisté na dopravní plánování). Soubor opatření vychází obvykle ze strategických a rozvojových plánů státních, krajských či městských institucí. Výhledový stav může mít několik variant podle různého stupně rozvoje/změny dopravní sítě. Změny v dopravní síti mohou nastat například:

- dostavbou části silniční nebo železniční sítě
- zrušením nebo uzavřením části silniční nebo železniční sítě
- změnou parametrů sítě (zkapacitnění, změna povolené rychlosti)
- změnou linkového vedení hromadné dopravy
- přestavbou křižovatky

Obr. 13 Změna v dopravní nabídce
Změna velikosti a struktury populace a vývoj demografických proměnných

Změna velikosti a struktury populace je modelována zvláště při posuzování rozdílu mezi současním stavem a scénářem referenčního stavu, který pak slouží pro porovnávání se scénáři alternativních stavů. Návrh opatření cílící na demografickou změnu populace zpravidla není součástí souboru záměrů pro alternativní scénář v dopravním modelu. Mezi scénáři současného stavu a referenčního stavu je tak nejčastěji posuzován přirozený vývoj populace a její struktury (např. ekonomická aktivita) a demografických měr (porodnost, migrace, úmrtnost). Změna velikosti a struktury populace ovlivní dopravní poptávku v budoucnu. Kombinací údajů o populaci s výsledky průzkumů dopravního chování lze stanovit budoucí stav (např. hybnost obyvatelstva, stupeň automobilizace) za předpokladu, že se dopravní chování nebude vývijet.

Prognózu vývoje počtu obyvatel je doporučeno zpracovávat kohortně-komponentní metodou a výslednou predikci uvádět spolu s intervalom spolehlivosti modelovaných hodnot. Pokud to charakter predikce nevyžaduje, stačí zpracovat pouze jednu variantu vývoje. Někdy uváděné „vysoké“ a „nízké“ varianty vývoje spíše v praxi znesnadňují interpretaci výsledků prognózy.

Struktura demografické prognózy je konzultována s uživatelem, kterým je v praxi většinou zástupce dopravního či územní plánování. Demografické chování dále přímo ovlivňuje např. bytová politika, školství či ekonomická politika.

Obr. 14 Změna velikosti a struktury populace a vývoj demografických proměnných

Změna ve využití území

Obdobně jako změna populace, je i změna využití území modelována nejčastěji při posuzování rozdílu mezi současným stavem a scénářem referenčního stavu. Mezi oběma scénáři je posuzován předpokládaný (plánovaný) vývoj/rozvoj území, který je definován nejčastěji v územně plánovací dokumentaci (územní plán, zásady územního rozvoje, územní studie). Rozsah tohoto vývoje však stanovuje uživatel modelu ve spolupráci s tvůrcem modelu.

V praxi lze rozlišit tyto základní typy ploch v území. Kategorie zpravidla vycházejí ze struktury segmentace modelované dopravní poptávky (kap. 4.2.4). Nejčastěji se jedná o plochy:

- bydlení (údaje o plochách se propojují s údaji o populaci současně i výhledově (prognózou obyvatelstva)

8 Zjednodušeně se jedná o iterační výpočet (simulaci) počtu obyvatel v kohortách věkové pyramidy s využitím vývoje tří základních demografických komponent: úmrtnosti, plodnosti a migrace. (viz Rowland, 2003 [36])
• pracoviště (počet pracovních míst)
• vzdělávání (počet žáků, studentů a učňů)
• nakupování (počet maloobchodních jednotek a velikost prodejních ploch)
• rekreací i volnočasová vybavenost území (počet zařízení určených k dané aktivitě)
• zdravotnictví (počet zařízení, počet lůžek, počet lékařů nebo počet pacientů)

V praxi u modelování rozvoje měst poté dochází k přerozdělení některých přepravních vztahů ve prospěch nových zón. Predikce by měla vystihnout přesně tyto vztahy mezi rozšířením funkcí v území a dopravním chováním uživatelů, se zvláštním zřetelem na příjezdové cesty do města a okolních obcí. Další část by měla být věnována struktúře sítě veřejné dopravy a vazbě na funkce v území. Stěžejním bodem je také integrace sítí pro jednotlivé druhy dopravy v rámci dopravního systému a jejich rozložení v území. Tím je myšlena i logika a propojení úseků komunikací, které spravují různí správci (město, kraj, stát, soukromé subjekty), celková funkčnost a analýza, zda některé komunikace nepůsobí jako bariéry v území.

Charakteristika by se neměla omezit pouze na souhrn informací o městě a jeho územním členění, ale měla by také poskytnout podrobnější informace o využití území a prostoru pro dopravu, a to v současné i alternativním stavu. Doplňí tak stavající datovou základnu městského úřadu o aktuální a prognostická data. Jejími cíli jsou charakterizovat využití území ve vztahu k současné a potenciální poptávce po dopravě a analyzovat je spolu s dalšími aspekty.

Obr. 15 Změna ve využití území

Změna v dopravním chování

V případě hodnocení změny dopravního chování je třeba vytvořit dva scénáře vývoje – scénář referenčního stavu a alternativního stavu. V prvním scénáři se budou projednovat změny dopravního chování pouze vlivem změny využití území a změny obyvatelstva. Změna dopravního chování v důsledku těchto dvou vlivů reprezentuje přirozený vývoj. V druhém scénáři se budou projednovat vlivy návrhů opatření a záměrů v dopravě včetně přirozených. Klíčovým datovým vstupem jsou údaje z průzkumu dopravního chování, konkrétně z průzkumu vyjadřených preferencí, jelikož posuzované opatření mohou být velmi často způsobeny zaváděním zcela nových opatření, na které je třeba provést průzkumy změny dopravního chování.

Analýza dopravního chování v celém řešeném území je klíčovým zdrojem informací pro pochopení, jak v aglomeraci funguje dopravní poptávka a jak ji lze ovlivňovat nebo dokonce řídit. Tato analýza odpoví na otázky – kolik, kde, kdo, kdy, jak a kam se přepravuje. Jedním z klíčových indikátorů je
cestovní doba pro každý druh dopravy a speciálně pro vhodně zvolené referenční cesty uskutečněné veřejnou dopravou, cyklistickou dopravou a osobním automobilem (se zohledněním parkovacích možností a jiných překážek, tzv. od dveří ke dveřím, dále výše tarifu, ceny pohonných hmot apod.). Výsledky modelu také ukážou vzájemnou konkurenceschopnost, efektivitu těchto druhů doprav a nasměrují budoucí řešení.

Obr. 16 Změna v dopravním chování

4.7.5 Určení možných odchylek predikce

Vzhledem ke vzdáleným časovým horizontům, ke kterým se prognózy dopravy vztahují, je nutné uvažovat s jejich možnou odchylkou od skutečného budoucího stavu. Odchylky obvykle plynou zvláště z chybných předpokladů modelu, z nepřesných dat (Garbage In, Garbage Out) nebo zjednodušených modelovacích metod (např. lineární extrapolace trendů bez analýzy trendů nebo bez zohlednění základních proměnných).

Možné odchylky vstupních parametrů prognózy by měly být vstupem do rizikové analýzy, která je součástí zpracování významnějších projektů a definuje rizika, kterým je projekt vystaven.

U velkých projektů by měl každý z výše zmíněných ukazatelů nezávislého charakteru (např. vývoj HDP, vývoj populace cena dopravy, ale i předpoklad vývoje dopravní infrastruktury) mít definovány možné výhledové odchylky v rámci intervalu spolehlivosti. V rámci predikovaných výsledků neprobíhá sofistikovaná ex ante validace výsledků, nicméně základní metodou kontroly kvality modelu je metoda ověřování, tedy detailního prověření způsobu modelování jednotlivých částí dopravního modelu včetně nastavení jednotlivých parametrů a scénářů vývoje.

4.7.6 Monitoring kvality predikce

4.8. DOKUMENTACE DOPRAVNÍHO MODELU

Ke každému zpracovanému dopravnímu modelu by měla vzniknout příslušná dokumentace, což ve většině případů znamená souhrnnou zprávu. Ta by měla zahrnovat popis a rozbor současné dopravní situace a socioekonomických poměrů v oblasti a předpokládaný vývoj těchto ukazatelů. Samozřejmě je popis řešené stavby či opatření.

V souhrnné zprávě by měl být popsán postup tvorby modelu od použitých podkladů a základních předpokladů přes postup samotné tvorby a kalibrace modelu současného stavu až po popis metodiky prognózy výhledových scénářů. Jedná se především o podrobný popis proměnných a hodnot parametrů každého z modelových kroků s jasným uvedením toho, jak byly odvozeny a kalibrovány.

Dokumentace dopravního modelu musí být jasná a transparentní. Jednak z důvodu zajištění důvěryhodnosti, ale taktéž z důvodu pozdější aktualizace modelu subjektem, který bude zcela odlíšný od tvůrčího týmu. Transparentnost modelu zvyšuje i jeho aplikovatelnost. Popísná dokumentace by se neměla týkat pouze tvorby samotného dopravního modelu, ale i sběrů vstupních dat včetně uvedení průběhu jejich zpracování a přípravy pro dopravní model.

Součástí této zprávy by měly být rovněž výstupy z modelu, například zářezové kartogramy či křížovatkové pentagramy. Další možností je doložení dopravních intenzit či výkonových ukazatelů v tabulkové formě.

Kromě dokumentace dopravního modelu by měl zadavatel u rozsáhlejších projektů požadovat i samotný dopravní model v software, ve kterém byl vytvořen, aby bylo možné jeho případné převzetí třetí stranou. Vzhledem je také předání vstupů a výstupů dopravního modelu v podobě GIS souborů s adekvátní dokumentací atributů. Tyto podmínky musí být jasně vymezeny již v zadání.
Hodnocení dopravního modelu

V příloze 1 lze nalézt souhrn otázek, které by si měl tvůrce a hodnotitel dopravního modelu zodpovědět.
SROVNÁNÍ „NOVOSTI POSTUPŮ“

V současné době neexistují standardy kvality, které by měly dopravní modely splňovat. Z toho důvodu se při výběrových řízeních na zakázky, kde je dopravní model zapotřebí, objevují vysoké rozdíly v cenách a kvalitě. Tato metodika si kladе za cíl narovnat toto konkurenční prostředí a požadovat kvalitní výstupy.

POPIS UPLATNĚNÍ „CERTIFIKOVANÉ METODIKY“

Tato metodika je koncipována tak, aby sloužila jako metodický rámce pro zadavatele a zpracovatele dopravního modelu. Zaměřuje se především na makroskopické čtyřstupňové modely a podmínky pro zadání dopravního modelu. Uživatel se tak může snadno zorientovat v prostředí dopravních modelů a od zpracovatele požadovat adekvátní výsledky.

Cílem metodiky je zavedení minimálních standardů kvality dopravních modelů do praxe. Dále se jedná o nastínění možností kontroly a zhodnocení kvality dopravních modelů.

EKONOMICKÉ ASPEKTY

Používání této metodiky by mělo vést k úspore finančních prostředků státní správy. Současná praxe je často taková, že dopravní modely měst a regionů jsou zpracovány opakovaně různými zpracovateli, v závislosti na formulaci zadání veřejných zakázek. To je samozřejmě velmi finančně nákladné a svým způsobem i zbytečné, neboť stejná činnost, tedy vytvoření dopravního modelu, je často prováděna opakovaně.

Cílem naopak je, aby byl dopravní model dané oblasti zpracován kvalitně a pouze jednou a následně předáván podle potřeby zpracovatelům realizovaných zakázek (buď celý model, nebo jeho významné výstupy – digitální modelová dopravní síť, přepravní vztahy, matematické funkce). Po vytvoření modelu dopravy splňujícího minimální standardy, by bylo nutno financovat pouze projekty typu:

- aktualizace nebo správa již hotového dopravního modelu
- úprava (vylepšení) stávajícího modelu dopravy, který nesplňuje minimální standardy
- posouzení rozvojových plánů měst a regionů, posouzení plánovaných dopravních opatření
- vypracování nebo aktualizace dopravních prognóz, přičemž model současného stavu (splňující minimální standardy) by byl k dispozici
- případně další potřebné dopravní, ekonomické nebo environmentální studie

Neopakování celého procesu tvorby dopravního modelu by mělo vést k úsporám pohybujícím se řádově ve stovkách tisíc korun pro menší město a v jednotkách milionů korun pro velkou městskou aglomeraci nebo region.

68
REJSTŘÍK

Activity-based přístup ... 20
Analýza potřeb .. 9
Consultant expertise .. 10
Dopravní model ... 14
Dopravní nabídka ... 14
Dopravní poptávka ... 14
Dynamické modely .. 19
Generalizované náklady ... 14
Gravitační metody .. 45
Hybnost obyvatelstva .. 44
Hybridní modely ... 18, 38
In-house expertise .. 10
Kalibrace .. 22, 53
Land-use Transportation Models 21
Makroskopické modely .. 17
Matice analogická ... 46
Matice syntetická ... 46
Metody růstových faktorů .. 45
Mezoskopické modely ... 18
Mikroskopické modely .. 17
Mode Choice ... 47
Multimodální modely .. 18
Nákladní doprava ... 35, 51
Nanoskopické modely ... 18
Nízkoemisní zóny ... 26
O-D matice ... 28
Odpor trasy ... 46
Pentagram ... 19
Pětistupňový model .. 36
Rozdělení cest .. 45
RPDI .. 30
Statické modely ... 19
Tour-based přístup ... 20
Traffic Assignment ... 48
Trip Distribution ... 45
Trip Generation .. 44
Trip-based přístup ... 20
Unimodální model .. 18
Validace ... 58
Volba dopravního prostředku 47
Vznik cest ... 44
Zatížení sítě ... 48
Zonální struktura ... 28

[37] „Reg. 1315/2013 - Nařízení EU 1315/2013 o hlavních směrech unie pro rozvoj transevropské dopravní sítě TEN-T.".
<table>
<thead>
<tr>
<th>I.</th>
<th>PŘÍPRAVNÁ FÁZE PROJEKTU</th>
<th>ANO/NE</th>
</tr>
</thead>
<tbody>
<tr>
<td>I.1</td>
<td>Jsou k dispozici všechna potřebná data pro tvorbu dopravního modelu?</td>
<td></td>
</tr>
<tr>
<td>I.2</td>
<td>Byl zvolen odpovídající řešitelský tým pro stavbu dopravního modelu?</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>II.</th>
<th>STAVBA MODELU</th>
<th>ANO/NE</th>
</tr>
</thead>
<tbody>
<tr>
<td>II.1</td>
<td>Byl zvolen odpovídající územní rozsah dopravního modelu?</td>
<td></td>
</tr>
<tr>
<td>II.2</td>
<td>Je zonální struktura (velikost a tvar zón) zvolena adekvátně k účelu dopravního modelu?</td>
<td></td>
</tr>
<tr>
<td>II.3</td>
<td>Jsou v modelu zaneseny všechny komunikace a všechny relevantní linky VD?</td>
<td></td>
</tr>
<tr>
<td>II.4</td>
<td>Zahrnuje model všechny plánované změny v dopravní nabídce?</td>
<td></td>
</tr>
<tr>
<td>II.5</td>
<td>Je segmentace obyvatel (rozdělení obyvatel do skupin s podobným dopravním chováním) a komoditních skupin v modelu dostatečná? Lze na jejím základě dobře interpretovat výsledky?</td>
<td></td>
</tr>
<tr>
<td>II.6</td>
<td>Počítá dopravní model se všemi časovými obdobími, které jsou potřebné pro interpretaci výsledků?</td>
<td></td>
</tr>
<tr>
<td>II.7</td>
<td>Byly zvoleny správné výpočetní algoritmy a má model dobře nastaveny parametry výpočtu?</td>
<td></td>
</tr>
<tr>
<td>II.8</td>
<td>Má model dostatečně podrobné členění dopravních módů dopravních systémů?</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>III.</th>
<th>KALIBRACE, VALIDACE</th>
<th>ANO/NE</th>
</tr>
</thead>
<tbody>
<tr>
<td>III.1</td>
<td>Je dopravní síť v modelu validní? Kapacita, nejvyšší povolená rychlost, křižovatkové pohyby</td>
<td></td>
</tr>
<tr>
<td>III.2</td>
<td>Souhlasí největší přepravní vztahy s polohou největších zdrojů a cílů dopravy v modelové oblasti?</td>
<td></td>
</tr>
<tr>
<td>III.3</td>
<td>Byl dopravní model kalibrován ve všech čtyřech krocích?</td>
<td></td>
</tr>
<tr>
<td>III.4</td>
<td>Souhlasí modelové intenzity na významných komunikacích s intenzitami ze sčítání dopravy? (vhodná je např. srovnávací tabulka)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>IV.</th>
<th>VÝSTUPY</th>
<th>ANO/NE</th>
</tr>
</thead>
<tbody>
<tr>
<td>IV.1</td>
<td>Jsou popsána všechna vstupní data, včetně jejich zpracování a odkazu na zdroj dat?</td>
<td></td>
</tr>
<tr>
<td>IV.2</td>
<td>Je dopravní model odevzdán ve formě splňující zadání? Odpovídá rozsah výstupů a zpracování (rozsah sítě, zhotovené časové horizonty apod.) zadání?</td>
<td></td>
</tr>
</tbody>
</table>